Thomas Kuhn’s Disruptive Paradigm Shift Innovation

William Storage           4 Sep 2012
Visiting Scholar, UC Berkeley Center for Science, Technology & Society

Down Not Out

Decades ago I read Thomas Kuhn’s 1962 book, The Structure of Scientific Revolutions, but forgot the details except for the general notion of paradigm shifts. Paradigm shifts are unforgettable. They’re popping up everywhere these days. Recently I’ve revisited Kuhn in detail with an eye toward understanding the application of science and criticism of science to technology and innovation (related posts: Postmodern Management Strategy, A New Misunderstanding of Science, Postmodernism, Thomas KuhnPaul Feyerabend).

Kuhn’s concept of paradigm shifts was innovative and disruptive, and he’s often cited in reference to disruptive innovation. His influence is amazingly broad. It’s hard to get through a TED conference or an innovation seminar without hearing his name. As I mentioned in my first post on Kuhn, he strongly rejected most use of his work. No matter – the accidental rebel Kuhn lives on, 50 years after Structure was published. Kuhn is the most famous of several historians/philosophers of science whose work escaped the realm of academia in the ’60s. This explosion of popularity may never have happened without the others in that field who set the stage for Structure. Primarily, these were Karl Popper, Imre Lakatos, and Paul Feyerabend.

In revisiting their work, I’ve collected some amazing quotes that show why these guys’ influence (mainly through Kuhn) went viral. The essential background here is that these scholars were, for the most part, methodologically and politically conservative and their writing was intended for a narrow audience of readers in their own fields. This important fact escaped (and continues to escape) most of the actual audience receiving their messages.

Kuhn was highly conservative, objectivist, authoritarian and generally positivist (by most understandings of positivism) when he wrote Structure and remained so throughout his career. The standard public view of Kuhn, however, was that he was subjectivist, relativist and liberal. These characteristics actually fit Kuhn’s opponent Karl Popper somewhat better, though Popper was closer in reality to the public conception of Kuhn. Paul Feyerabend was all over the board regarding Popper vs. Kuhn and most other subjects. Feyerabend, unlike both Popper and Kuhn, once embraced the cultural constructivist view of science but ultimately landed in objectivism. Imre Lakatos attempted a hybrid model of science somewhere between that of Popper and Kuhn. Kuhn’s runaway fame vanquished Popper and rendered Lakatos irrelevant.

The above summary grossly oversimplifies. None of these men where ideologues; their positions were far too highly developed for terms like relativist to be of much use beyond the coarsest of characterization. The below quotes show just how susceptible their writings can be to social reinterpretation, creative misunderstanding, and application to a spectrum of unrelated causes, especially when removed from their context.

Before the quotes from Kuhn, Popper, Lakatos and Feyerabend, I’ll give links to some recent writings that use Kuhn – not merely his terminology, which is ubiquitous – but direct references that actually cite The Structure of Scientific Revolutions. I’m listing some examples without judgment as to creative adaptation, creative misunderstanding, or clueless misappropriation.

Recent usage of Kuhn’s view of Paradigm Shift

Provocative quotes from Kuhn, Popper, Lakatos and Feyerabend:

Thomas Kuhn’s apparent attack on logic and empiricism:

As in political revolutions, so in paradigm choice—there is no standard higher than the assent of the relevant community… this issue of paradigm choice can never be unequivocally settled by logic and experiment alone. – The Structure of Scientific Revolutions (1962)

Thomas Kuhn on the paradigm shift:

The transition from a paradigm in crisis to a new one from which a new tradition of normal science can emerge is far from a cumulative process, one achieved by an articulation or extension of the old paradigm. Rather it is a reconstruction of the field from new fundamentals, a reconstruction that changes some of the field’s most elementary theoretical generalizations as well as many of its paradigm methods and applications. During the transition period there will be a large but never complete overlap between the problems that can be solved by the old and by the new paradigm. But there will also be a decisive difference in the modes of solution. When the transition is complete, the profession will have changed its view of the field, its methods, and its goals. – The Structure of Scientific Revolutions

Kuhn on interpretation of evidence:

Examining the record of past research from the vantage of contemporary historiography, the historian of science may be tempted to exclaim that when paradigms change, the world itself changes with them. Led by a new paradigm, scientists adopt new instruments and look in new places. Even more important, during revolutions scientists see new and different things when looking with familiar instruments in places they have looked before. – The Structure of Scientific Revolutions

Kuhn on bias in research:

Science does not deal in all possible laboratory manipulations. Instead it selects those relevant to the juxtaposition of a paradigm with the immediate experience that the paradigm has partially determined.  – The Structure of Scientific Revolutions

Kuhn on science’s distance from truth:

We may… have to relinquish the notion, explicit or implicit, that changes of paradigm carry scientists and those who learn from them closer and closer to the truth. – The Structure of Scientific Revolutions

Al Gore invoking Kuhn on paradigm shifts:

Well-established theories collapse under the weight of new facts and observations which cannot be explained, and then accumulate to the point where the once useful theory is clearly obsolete. – Commencement address at M.I.T. (7 Jun 1996)

Karl Popper on the role of the investigator:

… every step is guided by theory. We do not stumble upon our experiences, nor do we let them flow over us like a stream. Rather, we have to be active: we have to ‘make’ our experiences. It is we who always formulate the questions to be put to nature; it is we who try again and again to put these questions so as to elicit a clear-cut ‘yes’ or ‘no’ (for nature does not give an answer unless pressed for it). And in the end, it is again we who give the answer; it is we ourselves who, after severe scrutiny, decide upon the answer. – The Logic of Scientific Discovery, 1959

Popper on impossibility of justification and verification:

The best we can say of a hypothesis is that up to now it has been able to show its worth, and that it has been more successful than other hypotheses although, in principle, it can never be justified… – The Logic of Scientific Discovery

Popper on the shaky foundations of science:

 The empirical basis of objective science has … nothing ‘absolute’ about it. Science does not rest upon solid bedrock. The bold structure of its theories rises, as it were, above a swamp. It is like a building erected on piles. The piles are driven down from above into the swamp, but not down to any natural or ‘given’ base; and if we stop driving the piles deeper, it is not because we have reached firm ground. We simply stop when we are satisfied that the piles are firm enough to carry the structure, at least for the time being. – The Logic of Scientific Discovery

Paul Feyerabend’s often-quoted apparent defense of anarchy:

It is clear, then, that the idea of a fixed method, or of a fixed theory of rationality, rests on too naive a view of man and his social surroundings. To those who look at the rich material provided by history, and who are not intent on impoverishing it in order to please their lower instincts, their craving for intellectual security in the form of clarity, precision, ‘objectivity’, ‘truth’, it will become clear that there is only one principle that can be defended under all circumstances and in all stages of human development. It is the principle: anything goes. – Against Method: Outline of an Anarchistic Theory of Knowledge (1975), 27-8.

Feyerabend’s rarely quoted qualification of the above:

Science is an essentially anarchic enterprise: theoretical anarchism is more humanitarian and more likely to encourage progress than its law-and-order alternatives. – Against Method

Feyerabend, sounding very conservative on the cultural-construction model of science:

How can an enterprise depend on culture in so many ways, and yet produce such solid results? Most answers to this question are either incomplete or incoherent. Physicists take the fact for granted. Movements that view quantum mechanics as a turning-point in thought – and that include fly-by-night mystics, prophets of a New Age, and relativists of all sorts – get aroused by the cultural component and forget predictions and technology. – “Atoms and Consciousness,” Common Knowledge Vol. 1, No. 1, 1992

Sociologist Steve Fuller on Kuhn vs. Popper:

… both can reasonably lay claim to having been seriously misinterpreted by friends and foes alike. The situation has not been helped by the standard presentation of the ‘Kuhn–Popper debate’ in textbooks on philosophy and the scientific method. In terms of scholastic affiliations, Popper is portrayed as objectivist, realist and positivist, while Kuhn appears as subjectivist, relativist and historicist. … Thus, philosophers – even the great ones – spend most of their time attacking straw opponents who fail to correspond to any actual precursor. – Kuhn vs. Popper, 2003

Imre Lakatos defending philosophy of science against scientists:

How can a mere philosopher devise criteria distinguishing between good and bad science, knowing it is an inutterable mystic secret of the Royal Society?  – ‘Lecture One on the Scientific Method’ (1973)

Lakatos against Popper:

No experimental result can ever kill a theory: any theory can be saved from counterinstances either by some auxiliary hypothesis or by a suitable reinterpretation of its terms. – ‘Falsification and the Methodology of Scientific Research Programmes’, in I. Lakatos and A. Musgrave (eds.), Criticism and the Growth of Knowledge: Proceedings of the International Colloquium in the Philosophy of Science, London 1965 (1970), Vol. 4, 116.

Lakatos on science creating its own universe:

Scientists dream up phantasies and then pursue a highly selective hunt for new facts which fit these phantasies. This process may be described as ‘science creating its own universe’ (as long as one remembers that ‘creating’ here is used in a provocative-idiosyncratic sense). A brilliant school of scholars (backed by a rich society to finance a few well-planned tests) might succeed in pushing any fantastic programme ahead, or alternatively, if so inclined, in overthrowing any arbitrarily chosen pillar of ‘established knowledge’. – ‘Falsification and the Methodology of Scientific Research Programmes

Feyerabend on popular use of Kuhn:

Kuhn’s masterpiece played a decisive role. It led to new ideas, Unfortunately it also led to lots of trash – Against Method



Down Not Out” photo by Thomas Hawk, used by permission  See him on Flickr.

, , ,

  1. Thomas Kuhn's Disruptive Paradigm Shift Innovation « The ... | Paradigm Shifts |
  2. Richard Rorty: A Matter for the Engineers « The Multidisciplinarian
  3. Are You Kuhnian? | The Multidisciplinarian

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: