Is Clean Energy a Wicked Problem? – Part 3

 

WitchIn two previous posts I looked at the established definition of wicked problem and tested whether a rough statement of the clean energy problem met the 10 (adjusted to 11 by me) points of that definition. I found that clean energy met about half the requirements to qualify as wicked. Next I want to look at whether characterizing the problem of clean energy as wicked is productive.

Outside the usual hyperbole of climate journalism, there are a number of serious, credible authors who use the term. The Hartwell Paper (London School of Economics, 2010), referenced in yesterday’s post, features it rather centrally. Its authors sought a means of putting climate policy on track after failure of the Copenhagen climate conference. They made some excellent points and recommendations, noting that climate policy and energy policy are not the same thing. They suggested that reframing the climate issue around matters of human dignity will likely be more effective than framing it around human sin and atonement. They also asserted that the UNFCCC/Kyoto model was doomed to failure from the start because it approached climate change as a tame problem when in fact it is a wicked one. I believe The Hartwell Paper errs considerably in concluding that mischaracterization of a wicked problem as a tame one was the main reason for failure of Kyoto. Doing so implies much too sharp a distinction between tame and wicked and overstates the value of that distinction in determining how to attack a problem. Kyoto’s failure can be understood by simple economics; some parties saw insufficient benefit for the cost.

The Hartwell Paper says that presence of open, complex and/or nonlinear systems make a problem wicked. Hartwell does not address nonlinearity by name, though one of its authors, Gwyn Prins, does in related discussions. Though I agree with most of the conclusions reached by Hartwell and separately by Prins, I think Prins’ work might benefit from a better understanding of systems engineering and design and less reliance on the notion of wickedness. To clarify, my only quibble with Prins is terminology, not intent or conclusion. The terminology wouldn’t matter except that it becomes fuel for trumpery and creates an air of unsolvability.

For example, Prins contrasts the wicked problems of climate and energy with the tame problem of aircraft carrier design (The Wicked Problem of Climate Change on YouTube). He offers that in the case of an aircraft carrier, after a certain amount of study into metallurgy and propulsion systems, you can know that it’s time to quit studying and start building, but the lack of definitive formulation of the climate problem prevents us from identifying a similar point in the problem solving sequence for climate.

But this comparison – fix climate change versus build aircraft carrier – is inaccurate. The goal in the case of an aircraft carrier is not an armored boat with 40 fighter jets on it. The carrier is a system, itself a component within a larger weapons system having the objective of national defense. National defense might further be elaborated something like the capacity to defend the US and allies against various military threats, to operate efficiently with minimum risk to its occupants while being reliable, maintainable and fuel-efficient.

In other words, a better comparison would be national defense versus climate change. These problems probably have similar wickedness. If national defense were a tame problem, we could, with a finite amount of analysis and calculation, derive the horsepower requirements of an aircraft carrier’s nuclear-driven turbines and the BTU requirements for its cooling system, through some complex but finite analytical process, from the requirement for national security. But translating peace-keeping and defense-readiness into horsepower first requires making a bunch of subjective and qualitative decisions using an arbitrarily large number of very human judgments. These judgments have no stopping rule; the design has an infinite number of potential solutions, and is close to a one-shot solution that is prone to unintended consequences (case in point, the French carrier Charles de Gaulle). Once implemented, products like the aircraft carrier have no ultimate test of efficacy. Weapons system design – and almost all engineering design problems – are wicked problems using Rittel’s criteria. So how useful is the characterization of wickedness?

One potential value of calling a problem wicked is to convince management and government that study is needed before quantitative requirements can be set, but I think that point is now firmly established. Many engineers would see this as the usual need for requirements analysis, which has always been a subjective and social process involving operations analysis, identification of stakeholders, ethnography, focus groups, scenario and persona modeling, interviews with subject matter experts, consensus tools, fall-back methods, and possibly a dictator or tie breaker.

Steve Rayner of Oxford is another fan of wicked problems. He’s done great work in bringing rationality and pragmatism to climate policy, but his application of wickedness (e.g., Wicked Problems: Clumsy Solutions) can easily be read (erroneously) as an admission of insolvability. If the category wicked once had value, it now seems a liability – an immobilizing one at that. We have work to do; roll up your sleeves.

Rittel and Webber concluded their paper with no advice on how to deal with wickedness; but they imply early on a need for the social professions to advance beyond the view that “instruments of perfectability can be perfected.” I take that to mean they see limits to the utility of science and flaws in viewing organizations, governments and societies as mechanisms. I agree; the mid 20th century was rife with such flawed thinking. However, governments, managers and product design teams have always had to deal with deciding what to tell the engineers to build. If this is the reason climate and energy writers find their topic to be wicked, the term is useless.

A related problem revealed by press covering climate and energy wickedness is that many journalists confuse the difficulty of reaching consensus with the difficulty of making calculations. An open system in physics is merely a means of modeling a physical process; we model problems as open or closed as a convenience for analysis. Social scientists use open system to discuss adaptive agents, co-evolution and social or political interactions. They’re both good definitions in the their contexts, but confusing them leads to the bad conclusion that physical open systems are unanalyzable by the tools of science. The same applies for the term, nonlinearity. In engineering, it means a second- or higher-order system – standard engineering stuff. In new age literature, it sometimes (at its worst) implies a style of thinking that refutes logic and rationality. We can’t blame equivocation of the terms open system and nonlinearity on the use of the term wicked problem, but we can recognize that choice of language has a dramatic effect on popular uptake of science (see post Toward a New Misunderstanding of Science).

Assigning wickedness to the problems of climate/energy or national defense adds little value toward dealing with them. Nor does calling them super-wicked as do Levin et al in “Playing it Forward: Path Dependency, Progressive Incrementalism, and the ‘Super Wicked’ Problem of Global Climate Change,” which does, thankfully, take pains to avoid a lost-cause position. But wicked and super-wicked do have the power to bewilder and demoralize because of our inability to divorce wicked from its more traditional context. Characterizing the problem as wicked is a self-fulfilling prophecy; it convinces that if some of the questions are unanswerable then no action can be taken. We don’t have to know how the global climate works in order to know how to avoid interfering with it any more than we currently do. We know that China is booming  and will accept no external constraints that hamper its economic growth. But we also know that China’s air pollution kills half a million people a year, that the US is good at inventing things, and that China is good at manufacturing them. We also know how to calculate the extent to which solar and wind can contribute to US and global clean energy. We know that governments can stimulate demand as well as supply. That’s something to work with, despite the lack of consensus or transcendent authority.

Further, we can know that solar-powered cell phone chargers, biodegradable phones, eco-beer, and gloves heated with USB-power are truly wicked, in the old-fashioned sense of the word. They’re wicked because of the point made by Rittel, Webber and Churchman in their original papers on wicked problems. Taming a small part of a wicked problem is morally wrong, as is outright faking it – surely the case with much of the greenwash. But even where there’s no fraud, minor taming with major fanfare is still reprehensible. It creates an illusion of progress and distracts us from the task at hand.

Next I want to look at whether our major clean energy efforts – wind and solar power, biomass, hybrid cars and the like  –  are wicked and morally wrong for these same reasons.

____________________

The price of metaphor is eternal vigilance – Arturo Rosenblueth and Norbert Wiener

, , ,

  1. #1 by john hall on September 20, 2012 - 10:39 pm

    http://en.wikipedia.org/wiki/David_Criswell

    Criswell has been an advocate for obtaining solar power from the moon

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: