ExpRelaxedOneHotCategorical distribution with temperature and logits.
Inherits From: Distribution
oryx.distributions.ExpRelaxedOneHotCategorical(
temperature, logits=None, probs=None, validate_args=False, allow_nan_stats=True,
name='ExpRelaxedOneHotCategorical'
)
An ExpRelaxedOneHotCategorical distribution is a logtransformed RelaxedOneHotCategorical distribution. The RelaxedOneHotCategorical is a distribution over random probability vectors, vectors of positive real values that sum to one, which continuously approximates a OneHotCategorical. The degree of approximation is controlled by a temperature: as the temperature goes to 0 the RelaxedOneHotCategorical becomes discrete with a distribution described by the logits, as the temperature goes to infinity the RelaxedOneHotCategorical becomes the constant distribution that is identically the constant vector of (1/event_size, ..., 1/event_size).
Because computing logprobabilities of the RelaxedOneHotCategorical can
suffer from underflow issues, this class is one solution for loss
functions that depend on logprobabilities, such as the KL Divergence found
in the variational autoencoder loss. The KL divergence between two
distributions is invariant under invertible transformations, so evaluating
KL divergences of ExpRelaxedOneHotCategorical samples, which are always
followed by a tf.exp
op, is equivalent to evaluating KL divergences of
RelaxedOneHotCategorical samples. See the appendix of Maddison et al., 2016
for more mathematical details, where this distribution is called the
ExpConcrete.
Examples
Creates a continuous distribution, whose exp approximates a 3class onehot
categorical distribution. The 2nd class is the most likely to be the
largest component in samples drawn from this distribution. If those samples
are followed by a tf.exp
op, then they are distributed as a relaxed onehot
categorical.
temperature = 0.5
p = [0.1, 0.5, 0.4]
dist = ExpRelaxedOneHotCategorical(temperature, probs=p)
samples = dist.sample()
exp_samples = tf.exp(samples)
# exp_samples has the same distribution as samples from
# RelaxedOneHotCategorical(temperature, probs=p)
Creates a continuous distribution, whose exp approximates a 3class onehot categorical distribution. The 2nd class is the most likely to be the largest component in samples drawn from this distribution.
temperature = 0.5
logits = [2, 2, 0]
dist = ExpRelaxedOneHotCategorical(temperature, logits=logits)
samples = dist.sample()
exp_samples = tf.exp(samples)
# exp_samples has the same distribution as samples from
# RelaxedOneHotCategorical(temperature, probs=p)
Creates a continuous distribution, whose exp approximates a 3class onehot categorical distribution. Because the temperature is very low, samples from this distribution are almost discrete, with one component almost 0 and the others very negative. The 2nd class is the most likely to be the largest component in samples drawn from this distribution.
temperature = 1e5
logits = [2, 2, 0]
dist = ExpRelaxedOneHotCategorical(temperature, logits=logits)
samples = dist.sample()
exp_samples = tf.exp(samples)
# exp_samples has the same distribution as samples from
# RelaxedOneHotCategorical(temperature, probs=p)
Creates a continuous distribution, whose exp approximates a 3class onehot categorical distribution. Because the temperature is very high, samples from this distribution are usually close to the (log(3), log(3), log(3)) vector. The 2nd class is still the most likely to be the largest component in samples drawn from this distribution.
temperature = 10
logits = [2, 2, 0]
dist = ExpRelaxedOneHotCategorical(temperature, logits=logits)
samples = dist.sample()
exp_samples = tf.exp(samples)
# exp_samples has the same distribution as samples from
# RelaxedOneHotCategorical(temperature, probs=p)
Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables. 2016.
Args  

temperature

A Tensor , representing the temperature of one or more
distributions. The temperature values must be positive, and the shape
must broadcast against (logits or probs)[..., 0] .

logits

An ND Tensor , N >= 1 , representing the log probabilities
of one or many distributions. The first N  1 dimensions index into a
batch of independent distributions and the last dimension represents a
vector of logits for each class. Only one of logits or probs should
be passed in.

probs

An ND Tensor , N >= 1 , representing the probabilities
of one or many distributions. The first N  1 dimensions index into a
batch of independent distributions and the last dimension represents a
vector of probabilities for each class. Only one of logits or probs
should be passed in.

validate_args

Python bool , default False . When True distribution
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.

allow_nan_stats

Python bool , default True . When True , statistics
(e.g., mean, mode, variance) use the value "NaN " to indicate the
result is undefined. When False , an exception is raised if one or
more of the statistic's batch members are undefined.

name

Python str name prefixed to Ops created by this class.

Attributes  

allow_nan_stats

Python bool describing behavior when a stat is undefined.
Stats return +/ infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is undefined (no clear way to say it is either + or  infinity), so the variance = E[(X  mean)**2] is also undefined. 
batch_shape

Shape of a single sample from a single event index as a TensorShape .
May be partially defined or unknown. The batch dimensions are indexes into independent, nonidentical parameterizations of this distribution. 
dtype

The DType of Tensor s handled by this Distribution .

event_shape

Shape of a single sample from a single batch as a TensorShape .
May be partially defined or unknown. 
event_size

Scalar int32 tensor: the number of classes.

experimental_shard_axis_names

The list or structure of lists of active shard axis names. 
logits

Input argument logits .

name

Name prepended to all ops created by this Distribution .

parameters

Dictionary of parameters used to instantiate this Distribution .

probs

Input argument probs .

reparameterization_type

Describes how samples from the distribution are reparameterized.
Currently this is one of the static instances

temperature

Batchwise temperature tensor of a RelaxedCategorical. 
trainable_variables


validate_args

Python bool indicating possibly expensive checks are enabled.

variables

Methods
batch_shape_tensor
batch_shape_tensor(
name='batch_shape_tensor'
)
Shape of a single sample from a single event index as a 1D Tensor
.
The batch dimensions are indexes into independent, nonidentical parameterizations of this distribution.
Args  

name

name to give to the op 
Returns  

batch_shape

Tensor .

cdf
cdf(
value, name='cdf', **kwargs
)
Cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
cdf(x) := P[X <= x]
Args  

value

float or double Tensor .

name

Python str prepended to names of ops created by this function.

**kwargs

Named arguments forwarded to subclass implementation. 
Returns  

cdf

a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .

copy
copy(
**override_parameters_kwargs
)
Creates a deep copy of the distribution.
Args  

**override_parameters_kwargs

String/value dictionary of initialization arguments to override with new values. 
Returns  

distribution

A new instance of type(self) initialized from the union
of self.parameters and override_parameters_kwargs, i.e.,
dict(self.parameters, **override_parameters_kwargs) .

covariance
covariance(
name='covariance', **kwargs
)
Covariance.
Covariance is (possibly) defined only for nonscalarevent distributions.
For example, for a lengthk
, vectorvalued distribution, it is calculated
as,
Cov[i, j] = Covariance(X_i, X_j) = E[(X_i  E[X_i]) (X_j  E[X_j])]
where Cov
is a (batch of) k x k
matrix, 0 <= (i, j) < k
, and E
denotes expectation.
Alternatively, for nonvector, multivariate distributions (e.g.,
matrixvalued, Wishart), Covariance
shall return a (batch of) matrices
under some vectorization of the events, i.e.,
Cov[i, j] = Covariance(Vec(X)_i, Vec(X)_j) = [as above]
where Cov
is a (batch of) k' x k'
matrices,
0 <= (i, j) < k' = reduce_prod(event_shape)
, and Vec
is some function
mapping indices of this distribution's event dimensions to indices of a
lengthk'
vector.
Args  

name

Python str prepended to names of ops created by this function.

**kwargs

Named arguments forwarded to subclass implementation. 
Returns  

covariance

Floatingpoint Tensor with shape [B1, ..., Bn, k', k']
where the first n dimensions are batch coordinates and
k' = reduce_prod(self.event_shape) .

cross_entropy
cross_entropy(
other, name='cross_entropy'
)
Computes the (Shannon) cross entropy.
Denote this distribution (self
) by P
and the other
distribution by
Q
. Assuming P, Q
are absolutely continuous with respect to
one another and permit densities p(x) dr(x)
and q(x) dr(x)
, (Shannon)
cross entropy is defined as:
H[P, Q] = E_p[log q(X)] = int_F p(x) log q(x) dr(x)
where F
denotes the support of the random variable X ~ P
.
Args  

other

tfp.distributions.Distribution instance.

name

Python str prepended to names of ops created by this function.

Returns  

cross_entropy

self.dtype Tensor with shape [B1, ..., Bn]
representing n different calculations of (Shannon) cross entropy.

entropy
entropy(
name='entropy', **kwargs
)
Shannon entropy in nats.
event_shape_tensor
event_shape_tensor(
name='event_shape_tensor'
)
Shape of a single sample from a single batch as a 1D int32 Tensor
.
Args  

name

name to give to the op 
Returns  

event_shape

Tensor .

experimental_default_event_space_bijector
experimental_default_event_space_bijector(
*args, **kwargs
)
Bijector mapping the reals (R**n) to the event space of the distribution.
Distributions with continuous support may implement
_default_event_space_bijector
which returns a subclass of
tfp.bijectors.Bijector
that maps R**n to the distribution's event space.
For example, the default bijector for the Beta
distribution
is tfp.bijectors.Sigmoid()
, which maps the real line to [0, 1]
, the
support of the Beta
distribution. The default bijector for the
CholeskyLKJ
distribution is tfp.bijectors.CorrelationCholesky
, which
maps R^(k * (k1) // 2) to the submanifold of k x k lower triangular
matrices with ones along the diagonal.
The purpose of experimental_default_event_space_bijector
is
to enable gradient descent in an unconstrained space for Variational
Inference and Hamiltonian Monte Carlo methods. Some effort has been made to
choose bijectors such that the tails of the distribution in the
unconstrained space are between Gaussian and Exponential.
For distributions with discrete event space, or for which TFP currently
lacks a suitable bijector, this function returns None
.
Args  

*args

Passed to implementation _default_event_space_bijector .

**kwargs

Passed to implementation _default_event_space_bijector .

Returns  

event_space_bijector

Bijector instance or None .

experimental_sample_and_log_prob
experimental_sample_and_log_prob(
sample_shape=(), seed=None, name='sample_and_log_prob', **kwargs
)
Samples from this distribution and returns the log density of the sample.
The default implementation simply calls sample
and log_prob
:
def _sample_and_log_prob(self, sample_shape, seed, **kwargs):
x = self.sample(sample_shape=sample_shape, seed=seed, **kwargs)
return x, self.log_prob(x, **kwargs)
However, some subclasses may provide more efficient and/or numerically stable implementations.
Args  

sample_shape

integer Tensor desired shape of samples to draw.
Default value: () .

seed

PRNG seed; see tfp.random.sanitize_seed for details.
Default value: None .

name

name to give to the op.
Default value: 'sample_and_log_prob' .

**kwargs

Named arguments forwarded to subclass implementation. 
Returns  

samples

a Tensor , or structure of Tensor s, with prepended dimensions
sample_shape .

log_prob

a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .

is_scalar_batch
is_scalar_batch(
name='is_scalar_batch'
)
Indicates that batch_shape == []
.
Args  

name

Python str prepended to names of ops created by this function.

Returns  

is_scalar_batch

bool scalar Tensor .

is_scalar_event
is_scalar_event(
name='is_scalar_event'
)
Indicates that event_shape == []
.
Args  

name

Python str prepended to names of ops created by this function.

Returns  

is_scalar_event

bool scalar Tensor .

kl_divergence
kl_divergence(
other, name='kl_divergence'
)
Computes the KullbackLeibler divergence.
Denote this distribution (self
) by p
and the other
distribution by
q
. Assuming p, q
are absolutely continuous with respect to reference
measure r
, the KL divergence is defined as:
KL[p, q] = E_p[log(p(X)/q(X))]
= int_F p(x) log q(x) dr(x) + int_F p(x) log p(x) dr(x)
= H[p, q]  H[p]
where F
denotes the support of the random variable X ~ p
, H[., .]
denotes (Shannon) cross entropy, and H[.]
denotes (Shannon) entropy.
Args  

other

tfp.distributions.Distribution instance.

name

Python str prepended to names of ops created by this function.

Returns  

kl_divergence

self.dtype Tensor with shape [B1, ..., Bn]
representing n different calculations of the KullbackLeibler
divergence.

log_cdf
log_cdf(
value, name='log_cdf', **kwargs
)
Log cumulative distribution function.
Given random variable X
, the cumulative distribution function cdf
is:
log_cdf(x) := Log[ P[X <= x] ]
Often, a numerical approximation can be used for log_cdf(x)
that yields
a more accurate answer than simply taking the logarithm of the cdf
when
x << 1
.
Args  

value

float or double Tensor .

name

Python str prepended to names of ops created by this function.

**kwargs

Named arguments forwarded to subclass implementation. 
Returns  

logcdf

a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .

log_prob
log_prob(
value, name='log_prob', **kwargs
)
Log probability density/mass function.
Args  

value

float or double Tensor .

name

Python str prepended to names of ops created by this function.

**kwargs

Named arguments forwarded to subclass implementation. 
Returns  

log_prob

a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .

log_survival_function
log_survival_function(
value, name='log_survival_function', **kwargs
)
Log survival function.
Given random variable X
, the survival function is defined:
log_survival_function(x) = Log[ P[X > x] ]
= Log[ 1  P[X <= x] ]
= Log[ 1  cdf(x) ]
Typically, different numerical approximations can be used for the log
survival function, which are more accurate than 1  cdf(x)
when x >> 1
.
Args  

value

float or double Tensor .

name

Python str prepended to names of ops created by this function.

**kwargs

Named arguments forwarded to subclass implementation. 
Returns  

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype .

logits_parameter
logits_parameter(
name=None
)
Logits vec computed from nonNone
input arg (probs
or logits
).
mean
mean(
name='mean', **kwargs
)
Mean.
mode
mode(
name='mode', **kwargs
)
Mode.
param_shapes
@classmethod
param_shapes( sample_shape, name='DistributionParamShapes' )
Shapes of parameters given the desired shape of a call to sample()
.
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution
so that a particular shape is
returned for that instance's call to sample()
.
Subclasses should override class method _param_shapes
.
Args  

sample_shape

Tensor or python list/tuple. Desired shape of a call to
sample() .

name

name to prepend ops with. 
Returns  

dict of parameter name to Tensor shapes.

param_static_shapes
@classmethod
param_static_shapes( sample_shape )
param_shapes with static (i.e. TensorShape
) shapes.
This is a class method that describes what key/value arguments are required
to instantiate the given Distribution
so that a particular shape is
returned for that instance's call to sample()
. Assumes that the sample's
shape is known statically.
Subclasses should override class method _param_shapes
to return
constantvalued tensors when constant values are fed.
Args  

sample_shape

TensorShape or python list/tuple. Desired shape of a call
to sample() .

Returns  

dict of parameter name to TensorShape .

Raises  

ValueError

if sample_shape is a TensorShape and is not fully defined.

parameter_properties
@classmethod
parameter_properties( dtype=tf.float32, num_classes=None )
Returns a dict mapping constructor arg names to property annotations.
This dict should include an entry for each of the distribution's
Tensor
valued constructor arguments.
Distribution subclasses are not required to implement
_parameter_properties
, so this method may raise NotImplementedError
.
Providing a _parameter_properties
implementation enables several advanced
features, including:
 Distribution batch slicing (
sliced_distribution = distribution[i:j]
).  Automatic inference of
_batch_shape
and_batch_shape_tensor
, which must otherwise be computed explicitly.  Automatic instantiation of the distribution within TFP's internal property tests.
 Automatic construction of 'trainable' instances of the distribution using appropriate bijectors to avoid violating parameter constraints. This enables the distribution family to be used easily as a surrogate posterior in variational inference.
In the future, parameter property annotations may enable additional
functionality; for example, returning Distribution instances from
tf.vectorized_map
.
Args  

dtype

Optional float dtype to assume for continuousvalued parameters.
Some constraining bijectors require advance knowledge of the dtype
because certain constants (e.g., tfb.Softplus.low ) must be
instantiated with the same dtype as the values to be transformed.

num_classes

Optional int Tensor number of classes to assume when
inferring the shape of parameters for categoricallike distributions.
Otherwise ignored.

Returns  

parameter_properties

A
str > tfp.python.internal.parameter_properties.ParameterPropertiesdict mapping constructor argument names to ParameterProperties`
instances.

Raises  

NotImplementedError

if the distribution class does not implement
_parameter_properties .

prob
prob(
value, name='prob', **kwargs
)
Probability density/mass function.
Args  

value

float or double Tensor .

name

Python str prepended to names of ops created by this function.

**kwargs

Named arguments forwarded to subclass implementation. 
Returns  

prob

a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .

probs_parameter
probs_parameter(
name=None
)
Probs vec computed from nonNone
input arg (probs
or logits
).
quantile
quantile(
value, name='quantile', **kwargs
)
Quantile function. Aka 'inverse cdf' or 'percent point function'.
Given random variable X
and p in [0, 1]
, the quantile
is:
quantile(p) := x such that P[X <= x] == p
Args  

value

float or double Tensor .

name

Python str prepended to names of ops created by this function.

**kwargs

Named arguments forwarded to subclass implementation. 
Returns  

quantile

a Tensor of shape sample_shape(x) + self.batch_shape with
values of type self.dtype .

sample
sample(
sample_shape=(), seed=None, name='sample', **kwargs
)
Generate samples of the specified shape.
Note that a call to sample()
without arguments will generate a single
sample.
Args  

sample_shape

0D or 1D int32 Tensor . Shape of the generated samples.

seed

PRNG seed; see tfp.random.sanitize_seed for details.

name

name to give to the op. 
**kwargs

Named arguments forwarded to subclass implementation. 
Returns  

samples

a Tensor with prepended dimensions sample_shape .

stddev
stddev(
name='stddev', **kwargs
)
Standard deviation.
Standard deviation is defined as,
stddev = E[(X  E[X])**2]**0.5
where X
is the random variable associated with this distribution, E
denotes expectation, and stddev.shape = batch_shape + event_shape
.
Args  

name

Python str prepended to names of ops created by this function.

**kwargs

Named arguments forwarded to subclass implementation. 
Returns  

stddev

Floatingpoint Tensor with shape identical to
batch_shape + event_shape , i.e., the same shape as self.mean() .

survival_function
survival_function(
value, name='survival_function', **kwargs
)
Survival function.
Given random variable X
, the survival function is defined:
survival_function(x) = P[X > x]
= 1  P[X <= x]
= 1  cdf(x).
Args  

value

float or double Tensor .

name

Python str prepended to names of ops created by this function.

**kwargs

Named arguments forwarded to subclass implementation. 
Returns  

Tensor of shape sample_shape(x) + self.batch_shape with values of type
self.dtype .

unnormalized_log_prob
unnormalized_log_prob(
value, name='unnormalized_log_prob', **kwargs
)
Potentially unnormalized log probability density/mass function.
This function is similar to log_prob
, but does not require that the
return value be normalized. (Normalization here refers to the total
integral of probability being one, as it should be by definition for any
probability distribution.) This is useful, for example, for distributions
where the normalization constant is difficult or expensive to compute. By
default, this simply calls log_prob
.
Args  

value

float or double Tensor .

name

Python str prepended to names of ops created by this function.

**kwargs

Named arguments forwarded to subclass implementation. 
Returns  

unnormalized_log_prob

a Tensor of shape
sample_shape(x) + self.batch_shape with values of type self.dtype .

variance
variance(
name='variance', **kwargs
)
Variance.
Variance is defined as,
Var = E[(X  E[X])**2]
where X
is the random variable associated with this distribution, E
denotes expectation, and Var.shape = batch_shape + event_shape
.
Args  

name

Python str prepended to names of ops created by this function.

**kwargs

Named arguments forwarded to subclass implementation. 
Returns  

variance

Floatingpoint Tensor with shape identical to
batch_shape + event_shape , i.e., the same shape as self.mean() .

__getitem__
__getitem__(
slices
)
Slices the batch axes of this distribution, returning a new instance.
b = tfd.Bernoulli(logits=tf.zeros([3, 5, 7, 9]))
b.batch_shape # => [3, 5, 7, 9]
b2 = b[:, tf.newaxis, ..., 2:, 1::2]
b2.batch_shape # => [3, 1, 5, 2, 4]
x = tf.random.stateless_normal([5, 3, 2, 2])
cov = tf.matmul(x, x, transpose_b=True)
chol = tf.linalg.cholesky(cov)
loc = tf.random.stateless_normal([4, 1, 3, 1])
mvn = tfd.MultivariateNormalTriL(loc, chol)
mvn.batch_shape # => [4, 5, 3]
mvn.event_shape # => [2]
mvn2 = mvn[:, 3:, ..., ::1, tf.newaxis]
mvn2.batch_shape # => [4, 2, 3, 1]
mvn2.event_shape # => [2]
Args  

slices

slices from the [] operator 
Returns  

dist

A new tfd.Distribution instance with sliced parameters.

__iter__
__iter__()