Common-Mode Failure Driven Home

In a recent post I mentioned that probabilistic failure models are highly vulnerable to wrong assumptions of independence of failures, especially in redundant system designs. Common-mode failures in multiple channels defeats the purpose of redundancy in fault-tolerant designs. Likewise, if probability of non-function is modeled (roughly) as historical rate of a specific component failure times the length of time we’re exposed to the failure, we need to establish that exposure time with great care. If only one channel is in control at a time, failure of the other channel can go undetected. Monitoring systems can detect such latent failures. But then failures of the monitoring system tend to be latent.

For example, your car’s dashboard has an engine oil warning light. That light ties to a monitor that detects oil leaks from worn gaskets or loose connections before the oil level drops enough to cause engine damage. Without that dashboard warning light, the exposure time to an undetected slow leak is months – the time between oil changes. The oil warning light alerts you to the condition, giving you time to deal with it before your engine seizes.

But what if the light is burned out? This failure mode is why the warning lights flash on for a short time when you start your car. In theory, you’d notice a burnt-out warning light during the startup monitor test. If you don’t notice it, the exposure time for an oil leak becomes the exposure time for failure of the warning light. Assuming you change your engine oil every 9 months, loss of the monitor potentially increases the exposure time from minutes to months, multiplying the probability of an engine problem by several orders of magnitude. Aircraft and nuclear reactors contain many such monitoring systems. They need periodic maintenance to ensure they’re able to detect failures. The monitoring systems rarely show problems in the check-ups; and this fact often lures operations managers, perceiving that inspections aren’t productive, into increasing maintenance intervals. Oops. Those maintenance intervals were actually part of the system design, derived from some quantified level of acceptable risk.

Common-mode failures get a lot press when they’re dramatic. They’re often used by risk managers as evidence that quantitative risk analysis of all types doesn’t work. Fukushima is the current poster child of bad quantitative risk analysis. Despite everyone’s agreement that any frequencies or probabilities used in Fukushima analyses prior to the tsunami were complete garbage, the result for many was to conclude that probability theory failed us. Opponents of risk analysis also regularly cite the Tacoma Narrows Bridge collapse, the Chicago DC-10 engine-loss disaster, and the Mount Osutaka 747 crash as examples. But none of the affected systems in these disasters had been justified by probabilistic risk modeling. Finally, common-mode failure is often cited in cases where it isn’t the whole story, as with the Sioux City DC-10 crash. More on Sioux City later.

On the lighter side, I’d like to relate two incidents – one personal experience, one from a neighbor – that exemplify common-mode failure and erroneous assumptions of exposure time in everyday life, to drive the point home with no mathematical rigor.

I often ride my bicycle through affluent Marin County. Last year I stopped at the Molly Stone grocery in Sausalito, a popular biker stop, to grab some junk food. I locked my bike to the bike rack, entered the store, grabbed a bag of chips and checked out through the fast lane with no waiting. Ninety seconds at most. I emerged to find no bike, no lock and no thief.

I suspect that, as a risk man, I unconsciously model all risk as the combination of some numerical rate (occurrence per hour) times some exposure time. In this mental model, the exposure time to bike theft was 90 seconds. I likely judged the rate to be more than zero but still pretty low, given broad daylight, the busy location with lots of witnesses, and the affluent community. Not that I built such a mental model explicitly of course, but I must have used some unconscious process of that sort. Thinking like a crook would have served me better.

If you were planning to steal an expensive bike, where would you go to do it? Probably a place with a lot of expensive bikes. You might go there and sit in your pickup truck with a friend waiting for a good opportunity. You’d bring a 3-foot long set of chain link cutters to make quick work of the 10 mm diameter stem of a bike lock. Your friend might follow the victim into the store to ensure you were done cutting the lock and throwing the bike into the bed of your pickup to speed away before the victim bought his snacks.

After the fact, I had much different thought thoughts about this specific failure rate. More important, what is the exposure time when the thief is already there waiting for me, or when I’m being stalked?

My neighbor just experienced a nerve-racking common mode failure. He lives in a San Francisco high-rise and drives a Range Rover. His wife drives a Mercedes. He takes the Range Rover to work, using the same valet parking-lot service every day. He’s known the attendant for years. He takes his house key from the ring of vehicle keys, leaving the rest on the visor for the attendant. He waves to the attendant as he leaves the lot on way to the office.

One day last year he erred in thinking the attendant had seen him. Someone else, now quite familiar with his arrival time and habits, got to his Range Rover while the attendant was moving another car. The thief drove out of the lot without the attendant noticing. Neither my neighbor nor the attendant had reason for concern. This gave the enterprising thief plenty of time. He explored the glove box, finding the registration, which includes my neighbor’s address. He also noticed the electronic keys for the Mercedes.

The thief enlisted a trusted colleague, and drove the stolen car to my neighbor’s home, where they used the electronic garage entry key tucked neatly into its slot in the visor to open the gate. They methodically spiraled through the garage, periodically clicking the button on the Mercedes key. Eventually they saw the car lights flash and they split up, each driving one vehicle out of the garage using the provided electronic key fobs. My neighbor lost two cars though common-mode failures. Fortunately, the whole thing was on tape and the law men were effective; no vehicle damage.

Should I hide my vehicle registration, or move to Michigan?

—————–

In theory, there’s no difference between theory and practice. In practice, there is.

  1. Leave a comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: