Posts Tagged Philosophy of Science

Epistemology of Innovation

prismI recently ran across an outstanding blog and series of articles by Bruce A. Vojak, Associate Dean for Administration and an Adjunct Professor in the College of Engineering at the University of Illinois. Vojak deals with the epistemology of innovation. Epistemology is mostly an academic term, not yet usurped by Silicon Valley spin doctors, which basically means the study of knowledge and its justification – in other words, what we know, how we know it, and how we know we know it. So it follows that Vojak’s intent is to challenge readers to reflect on the practice of innovation and on how practitioners come to know what to do today in order to innovate successfully.

Incidentally, Vojak uses the popular term, “breakthrough innovation” – as we all do. I’ve been somewhat skeptical that this term can really carry much epistemic weight. It is popular among innovation advocates, but I’m not sure it has any theoretical – thus predictive – value. Even Judy Estrin, a Silicon Valley visionary for whom I have great respect, differentiates breakthrough from other innovation only in terms of historical marketplace success. Thus it seems to me that breakthrough can only be applied to an innovation in retrospect. In this sense it may be rare that prospective innovators can know whether they are pursuing continuous innovation or the breakthrough variety. Why set your sights low? In any case, Vojak is much more knowledgeable on the topic than I, and I’ll enjoy seeing where he goes with the breakthrough distinction that he develops somewhat in his So, what’s the big idea?. Vojak offers that breakthrough innovators are systems thinkers.

The articles by Vojak that I’m most thrilled with, contrasting the minds of contemporary innovators, are entitled “Patriarchs of Contemporary Innovation.” He’s released two of these this month:  Newton & Goethe and Socrates & Hegel. I love these for many reasons including good subjects, concisely covered, flowing logically in a non-academic tone; but especially because they assign a very broad scope to innovation, contrasting the tunnel vision of the tech press.

In  Newton & Goethe, Vojak looks at what can be learned from contrasting the two contemporary (with each other) thinkers. The objective Newton used a mathematical description of color, saw color as external to humans, reduced color into components (his famous prism experiment), and was a detached and dispassionate observer of it – the classic empiricist. For the subjective Goethe, color is something that humans do (it’s in our perception). Goethe was attached to color’s beauty; color is an experiential matter. In this sense, Newton is an analyst and Goethe is a design-thinker. Vojak then proposes that one role of an innovator is be able to hold both perspectives and to know when each is appropriate. Contrast this mature perspective with the magic-creative-powers BS peddled by Silicon Valley’s hockers of Design Thinking.

GodfreyKneller-IsaacNewton-1689Because of my interest in history of science/philosophy of science, one aspect of Newton & Goethe got me thinking along a bit of tangent, but I think a rather interesting one. Vojak contrasts the romanticism and metaphysics of Goethe with the naturalism and empiricism of Newton, the “mastery of them that know.” But even Newton’s empiricism went only so far. Despite his having revealed what he called “true causes” and “universal truths,” his responses to his peers on what gravity actually was suggest that he never sought justification (in the epistemological sense) for his theories.  “Gravity is the finger of God,” said Newton.

Newton was not a scientist, and we should avoid calling him that for reasons beyond the fact that the term did not exist in his day. He was a natural philosopher. When his rival continental natural philosophers – the disciples of Descartes – demanded explanation for force at a distance (how gravity pulls with no rope), Newton replied something along the lines of that gravity means what the equation says. For Newton there was no need to correlate experience with something behind the experience. This attitude seems natural today, with our post-Einstein, post-quantum-mechanics perspective, but certainly was rightly seen by the emerging naturalists of Newton’s day as a theological-holdout basis for denying any interest in understanding reality.

In my view, history shortchanges us a bit by not bothering to mention that only 20% of Newton’s writings were in math and physics, the rest being theology and various forms of spooky knowledge. As presented in modern textbooks, Newton doesn’t seem like the type who would spend years seeking divine secrets revealed in the proportions of biblical structures, yet he did. Newton helped himself to Design Thinking at times.

None of this opposes any of Vojak’s contrast of Newton and Goethe; I just find it fascinating that even in Newton’s day, there was quite a bit of thinking on the opposite side of Newton from Goethe.

I highly recommend Vojak’s very accessible blog and articles on the illinois.edu site to anyone seeking some fresh air on the topic of innovation.

,

2 Comments

Richard Rorty: A Matter for the Engineers

William Storage           13 Sep 2012
Visiting Scholar, UC Berkeley Science, Technology & Society Center

Richard Rorty, PhilosopherRichard Rorty (1931-2007) was arguably the most controversial philosopher in recent history. Unarguably, he was the most entertaining. Profoundly influenced by Thomas Kuhn, Rorty is fascinating and inspirational, even for engineers and scientists.

Rorty’s thought defied classification – literally; encyclopedias struggle to pin philosophical categories to him. He felt that confining yourself to a single category leads to personal stagnation on all levels. An interview excerpt at the end of this post ends with a casual yet weighty statement of his confidence in engineers’ ability to save the world.

Unlike many of his contemporaries, Rorty looked at familiar things in different light – and could explain his position in plain English. I never found much of Heidegger to be coherent, let alone important. No such problem with Dick Rorty.

Rorty could simplify arcane philosophical concepts. He saw similarities where others saw differences, being mostly rejected by schools of thought he drew from. This was especially true for pragmatism. Often accused of hijacking this term, Rorty offered that pragmatism is a vague, ambiguous, and overworked word, but nonetheless, “it names the chief glory of our country’s intellectual tradition.” He was enamored with moral and scientific progress, and often glowed with optimism and hope while his contemporaries brooded in murky, nihilistic dungeons.

Richard Rorty, PhilosopherRichard Rorty photo by Mary Rorty. Used by permission.

Rorty called himself a “Kuhnian” apart from those Kuhnians for whom The Structure of Scientific Revolution justified moral relativism and epistemic nihilism. Rorty’s critics in the hard sciences – at least those who embrace Kuhn – have gone to great lengths to distance Kuhn from Rorty. Philosophers have done the same, perhaps a bit sore from Rorty’s denigration of analytic philosophy and his insistence that philosophers have no special claim to wisdom. Kyle Cavagnini in the Spring 2012 issue of Stance (“Descriptions of Scientific Revolutions: Rorty’s Failure at Redescribing Scientific Progress”) finds that Rorty tries too hard to make Kuhn a relativist:

“Kuhn’s work provided a new framework in philosophy of science that garnered much attention, leading some of his theories to be adopted outside of the natural sciences. Unfortunately, some of these adoptions have not been faithful to Kuhn’s original theories, and at times just plain erroneous conclusions are drawn that use Kuhn as their justification. These misreadings not only detract from the power of Kuhn’s argument, but also serve to add false support for theories that Kuhn was very much against; Rorty was one such individual.”

Cavagnini may have some valid technical points. But it’s as easy to misread Rorty as to misread Kuhn. As I read Rorty, he derives from Kuhn that the authority of science has no basis beyond scientific consensus. It then follows for Rorty that instituational science and scientists have no basis for a privileged status in acquiring truth. Scientist who know their stuff shouldn’t disagree on this point. Rorty’s position is not cultural constructivism applied to science. He doesn’t remotely imply that one claim of truth – scientific or otherwise – is as good as another. In fact, Rorty explicitly argues against that position as applied to both science and ethics. Rorty then takes ideas he got from Kuhn to places that Kuhn would not have gone, without projecting his philosophical ideas onto Kuhn:

“To say that the study of the history of science, like the study of the rest of history, must be hermeneutical, and to deny (as I, but not Kuhn, would) that there is something extra called ‘rational reconstruction’ which can legitimize current scientific practice, is still not to say that the atoms, wave packages, etc., discovered by the physical scientists are creations of the human spirit.”  – Philosophy and the Mirror of Nature

“I hope to convince the reader that the dialectic within analytical philosophy, which has carried … philosophy of science from Carnap to Kuhn, needs to be carried a few steps further.” – Philosophy and the Mirror of Nature

What Rorty calls “leveling down science” is aimed at the scientism of logical positivists in philosophy – those who try to “science-up” analytic philosophy:

“I tend to view natural science as in the business of controlling and predicting things, and as largely useless for philosophical purposes” – Rorty and Pragmatism: The Philosopher Responds to his Critics

For Rorty, both modern science and modern western ethics can claim superiority over their precursors and competitors. In other words, we are perfectly capable of judging that we’ve made moral and scientific progress without a need for a privileged position of any discipline, and without any basis beyond consensus. This line of thought enabled the political right to accuse Rorty of moral relativism and at the same time the left to accuse him of bigotry and ethnocentrism. Both did vigorously. [note]

You can get a taste of Rorty from the sound and video snippets available on the web, e.g. this clip where he dresses down the standard philosophical theory of truth with an argument that would thrill mathematician Kurt Gödel:

In his 2006 Dewey Lecture in Law and Philosophy at the University of Chicago, he explains his position, neither moral absolutist nor moral relativist (though accused of being both by different factions), in praise of western progress in science and ethics.

Another example of Rorty’s nuanced position is captured on tape in Stanford’s archives of the Entitled Opinions radio program. Host Robert Harrison is an eloquent scholar and announcer, but in a 2005 Entitled Opinions interview, Rorty frustrates Harrison to the point of being tongue-tied. At some point in the discussion Rorty offers that the rest of the world should become more like America. This strikes Harrison as perverse.  Harrison asks for clarification, getting a response he finds even more perverse:

Harrison: What do you mean that the rest of the world should become a lot more like America? Would it be desirable to have all the various cultures across the globe Americanize? Would that not entail some sort of loss at least at the level of diversity or certain wisdoms that go back through their own particular traditions. What would be lost in the Americanization or Norwegianization of the world?

Rorty: A great deal would be lost. A great deal was lost when the Roman Empire suppressed a lot of native cultures. A great deal was lost when the Han Empire in China suppressed a lot of native cultures […]. Whenever there’s a rise in a great power a lot of great cultures get suppressed.  That’s the price we pay for history.

Asked if this is not too high a price to pay, Rorty answers that if you could get American-style democracy around the globe, it would be a small price to have paid. Harrison is astounded, if not offended:

Harrison: Well here I’m going to speak in my own proper voice and to really disagree in this sense: that  I think governments and forms of government are the result of a whole host of contingent geographical historical factors whereby western bourgeois liberalism or democracy arose through a whole set of circumstances that played themselves out over time, and I think that [there is in] America a certain set of presumptions that our form of democracy is infinitely exportable … [and] that we can just take this model of American democracy and make it work elsewhere. I think experience has shown us that it’s not that easy.

Rorty: We can’t make it work elsewhere but people coming to our country and finding out how things are done in the democratic west can go back and try to imitate that in their own countries. They’ve often done so with considerable success. I was very impressed on a visit to Guangzhou to see a replica of the statue of Liberty in one of the city parks. It was built by the first generation of Chinese students to visit America when they got back. They built a replica of the Statue of Liberty in order to help to try to explain to the other Chinese what was so great about the country they’d come back from. And remember that a replica of the Statue of Liberty was carried by the students in Tiananmen Square.

Harrison (agitated): Well OK but that’s one way. What if you… Why can’t we go to China and see a beautiful statue of the Buddha or something, and understand equally – have a moment of enlightenment and bring that statue back and say that we have something to learn from this other culture out there. And why is the statue of liberty the final transcend[ant] – you say yourself as a philosopher that you don’t – that there are no absolutes and that part of the misunderstanding in the history of philosophy is that there are no absolutes. It sounds like that for you the Statue of Liberty is an absolute.

Rorty: How about it’s the best thing anybody has come up with so far. It’s done more for humanity than the Buddha ever did. And it gives us something that … [interrupted]

Harrison: How can we know that!?

Rorty: From history.

Harrison: Well, for example, what do we know about the happiness of the Buddhist cultures from the inside?  Can we really know from the outside that we’re happier than they are?

Rorty: I suspect so. We’ve all had experiences in moving around from culture to culture. They’re not closed off entities, opaque to outsiders. You can talk to people raised in lots of different places about how happy they are and what they’d like.

Then it spirals down a bit further. Harrison asks Rorty if he thinks capitalism is a neutral phenomenon. Rorty replies that capitalism is the worst system imaginable except for all the others that have been tried so far. He offers that communism, nationalization of production and state capitalism were utter disasters, adding that private property and private business are the only option left until some genius comes up with a new model.

Harrison then reveals his deep concern over the environment and the free market’s effect on it, suggesting that since the human story is now shown to be embedded in the world of nature, that philosophy might entertain the topic of “life” – specifically, progressing beyond 20th century humanist utopian values in light of climate change and resource usage. Rorty offers that unless we develop fusion energy or similar, we’ve had it just as much as if the terrorists get their hands on nuclear bombs. Rorty says human life and nature are valid concerns, but that he doesn’t see that they give any reason for philosophers to start talking about life, a topic he says philosophy has thus far failed to illuminate.

This irritates Harrison greatly. At one point he curtly addresses Rorty as “my dear Dick.” Rorty’s clarification, his apparent detachment, and his brevity seem to make things worse:

Rorty: “Well suppose that we find out that it’s all going to be wiped out by an asteroid. Would you want philosophers to suddenly start thinking about asteroids? We may well collapse due to the exhaustion of natural resources but what good is it going to do for philosophers to start thinking about natural resources?”

Harrison: “Yeah but Dick there’s a difference between thinking of asteroids, which is something that is outside of human control and which is not submitted to human decision and doesn’t enter into the political sphere, and talking about something which is completely under the governance of human action. I don’t say it’s under the governance of human will, but it is human action which is bringing about the asteroid, if you like. And therefore it’s not a question of waiting around for some kind of natural disaster to happen, because we are the disaster – or one could say that we are the disaster – and that the maximization of wealth for the maximum amount of people is exactly what is putting us on this track toward a disaster.

Rorty: Well, we’ve accommodated environmental change before. Maybe we can accommodate it again; maybe we can’t. But surely this is a matter for the engineers rather than the philosophers.

A matter for the engineers indeed.

.

————————————————-

.

Notes

1) Rorty and politics: The academic left cheered as Rorty shelled Ollie North’s run for the US Senate. As usual, not mincing words, Rorty called North a liar, a claim later repeated by Nancy Reagan. There was little cheering from the right when Rorty later had the academic left in his crosshairs; perhaps they failed to notice.. In 1997 Rorty wrote that the academic left must shed its anti-Americanism and its quest for even more abusive names for “The System.” “Outside the academy,  Americans still want to feel patriotic,” observed Rorty. “They still want to feel part  of a nation which can take control of its destiny and make itself a  better place.”

On racism, Rorty observed that the left once promoted equality by saying we were all Americans, regardless of color. By contrast, he said, the contemporary left now “urges that America should  not be a melting-pot, because we need to respect one another  in our differences.” He chastised the academic left for destroying any hope for a sense of commonality by highlighting differences and preserving otherness. “National pride is to countries what self-respect is to individuals,” wrote Rorty.

For Dinesh D’Souza, patriotism is no substitute for religion. D’Souza still today seems obsessed with Rorty’s having once stated his intent “to arrange things so that students who enter as  bigoted, homophobic religious fundamentalists will leave college with  views more like our own.” This assault on Christianity lands Rorty on a D’Souza enemy list that includes Sam Harris, Christopher Hitchens, and Richard Dawkins, D’Souza apparently unaware that Rorty’s final understanding of pragmatism included an accomodation of liberal Christianity.

2) See Richard Rorty bibliographical material and photos maintained by the Rorty family on the Stanford web site. 

, , , , , ,

4 Comments

Paul Feyerabend – The Worst Enemy of Science

Moved to Paul Feyerabend, The Worst Enemy of Science

 

, , , ,

7 Comments

Science, Holism and Easter

Detail from Bianchini's MeridianaThomas E. Woods, Jr., in How the Catholic Church Built Western Civilization, credits the church as being the primary sponsor of western science throughout most of the church’s existence. His point is valid, though many might find his presentation very economical with the truth. With a view that everything in the universe was interconnected, the church was content to ascribe the plague to sin. The church’s interest in science had something to do with Easter. I’ll get to that after a small diversion to relate this topic to one from a recent blog post.

Catholic theologians, right up until very recent times, have held a totally holistic view, seeing properties and attributes as belonging to high level objects and their context, and opposing reductionism and analysis by decomposition. In God’s universe (as they saw it), behavior of the parts was determined by the whole, not the other way around. Catholic holy men might well be seen as champions of “Systems Thinking” – at least in the popular modern use of that term. Like many systems thinking advocates in business and politics today, the church of the middle ages wasn’t merely pragmatic-anti-reductionist, it was philosophically anti-reductionist. I.e., their view was not that it is too difficult to analyze the inner workings of a thing to understand its properties, but that it is fundamentally impossible to do so.

Baths of Diocletian
Santa Maria degli Angeli, a Catholic solar observatory

Unlike modern anti-reductionists, whose movement has been from reductionism toward something variously called collectivism, pluralism or holism, the Vatican has been forced in the opposite direction. The Catholics were dragged kicking and screaming into the realm of reductionist science because one of their core values – throwing really big parties – demanded it.

The celebration date of Easter is based on pagan and Jewish antecedents. Many agricultural gods were celebrated on the vernal equinox. The celebration is also linked to Shavuot and Passover. This brings the lunar calendar into the mix.   That means Easter is a movable feast; it doesn’t occur on a fixed day of the year. It can occur anywhere from March 22 to April 25. Roughly speaking, Easter is the first Sunday following the first full moon after the spring equinox. To mess things up further, the ecclesiastical definitions of equinox and full moon are not the astronomical ones. The church wades only so far into the sea of reductionism. Consequently, different sects have used different definitions over the years. Never fearful of conflict, factions invented nasty names for rival factions; and, as Socrates Scholasticus tells it, Bishop John Chrysostom booted some of his Easter-calculation opponents out of the early Catholic church.

The Sun of GodScience in the midst of faith, Santa Maria degli Angeli

By the 6th century, the papal authorities had legislated a calculation for Easter, enforcing it as if it came down on a tablet. By the twelfth century, they could no longer evade the fact that Easter had drifted way off course.

Right around that time, Muslim scholars had just  translated the works of the ancient Greek mathematicians to Latin (Ptolemy’s Almagest in particular). By the time of the Renaissance, Easter celebrations in Rome were gigantic affairs. Travel arrangements and event catering meant that the popes needed to plan for Easter celebrations many years in advance. They wanted to send out invitations specifying a single date, not a five week range.

Bianchini's MeridianaSketch from Bianchini’s 1703 “De nummo.”

Science appeared the only way to solve the messy problem of predicting Easter. And the popes happened to have money to throw at the problem. They suddenly became the world’s largest backer of scientific research – well, targeted research, one might say. John Heilbron, Vice-Chancellor Emeritus of UC Berkeley (who brought  me into History of Science at Cal) put it this way in his The Sun in the Church:

The Roman Catholic Church gave more financial support to the study of astronomy for over six centuries, from the recovery of ancient learning during the late Middle Ages into the Enlightenment, than any other, and, probably, all other, institutions. Those who infer the Church’s attitude from its persecution of Galileo may be reassured to know that the basis of its generosity to astronomy was not a love of science but a problem of administration. The problem was establishing and promulgating the date of Easter.

The tough part of the calculation was determining the exact time of the equinox. Experimental measurement would require a large observatory with a small hole in the roof and a flat floor where one could draw a long north-south line to chart out the spot the sun hit on the floor at noon. The spots would trace a circuit around the floor of the observatory. When the spot returned to the same point on the north-south line, you had the crux of the Easter calculation.

Bianchini's Meridian
Bianchini's MeridianaSolar observatory detail in marble floor of church

By luck or divine providence, the popes already had such observatories on hand – the grand churches of Europe. Punching a hole through the roof of God’s house was a small price to pay for predicting the date of Easter years in advance.

Fortunately for their descendants, scientists are prone to going off on tangents, some of which come in handy. They needed a few centuries of experimentation to perfect the Easter calculation. Matters of light diffraction and the distance from the center of the earth to the floor of the church had to be addressed. During this time Galileo and friends stumbled onto a few work byproducts that the church would have been happier without, and certainly would not have invested in.

Gnomon and meridian in Saint-Sulpice, Paris
Gnomon and meridian, Saint-Sulpice, Paris

The guy who finally mastered the Easter problem was Francesco Bianchini, multidisciplinarian par exellence. The church OK’d his plan to build a meridian line diagonally across the floor of the giant church of Santa Maria degli Angeli in Rome. This church owes its size to the fact that it was actually built as a bath during the reign of Diocletian (284 – 305 AD) and was then converted to a church by Pope Pius IV in 1560 with the assistance of Michelangelo. Pius set about to avenge Diocletian’s Christian victims by converting a part of the huge pagan structure built “for the convenience and pleasure of idolaters by an impious tyrant” to “a temple of the virgin.”

Bianchini’s meridian is a major point of tourist interest within Santa Maria degli Angeli. All that science in the middle of a church feels really odd – analysis surrounded by faith, reductionism surrounded by holy holism.

, , , , , ,

2 Comments

The Systems Thinking Wars

My goal for The Multidisciplinarian is to talk about multidisciplinary and interdisciplinary problem solving. This inevitably leads to systems, since problems requiring more than one perspective or approach tend to involve systems, whether biological, social, logical, mechanical or political.

I hope to touch upon a bunch of systems concepts at some point, including:

I started following some of these terms on Twitter a few weeks ago, and ended up reading a lot of web topics on Systems Thinking. I found all the classics, along with, surprisingly, something of a battleground. I don’t mean attacks from the outside, like the view that organizations are not systems but processes. Instead I’m talking about the enemy within. It seems there are several issues of contention.

The matter of whether Systems Thinking is a deterministic or “hard” approach percolates through many of the discussions. “Hard” in this context means that it’s a mere extension of systems engineering, treating humans, society, and business organizations as predictable machinery. But on the street (as opposed to in academics), there’s also disagreement over whether that attribute is desirable or not. Some proponents defend Systems Thinking as being largely deterministic against criticism that it is soft. Other defenders of the approach argue against criticism that it is deterministic.

Is Systems Thinking an approach, a model, a methodology, or a theory? That’s debatable too; and therefore, it’s being debated. One can infer from the debates and discussions that much of the problem stems from semantics. The term means different things to different communities. Such overloaded terminology works fine as long as the communities don’t overlap. But they do overlap, since systems tend to involve multiple disciplines.

From a distance, you can grasp the gist of Systems Thinking. At its most rudimentary level, it is seeing the forest from the trees and using that vision to get things done. Barry Richmond, celebrated systems scientist, gave this high level definition:

At the conceptual end of the spectrum is adoption of a systems perspective or viewpoint. You are adopting a systems viewpoint when you are standing back far enough—in both space and time—to be able to see the underlying web of ongoing, reciprocal relationships which are cycling to produce the patterns of behavior that a system is exhibiting.

Peter Senge of MIT says that Systems Thinking is an approach for getting beyond cause and effect to the patterns of behavior that surface the cause and effect, and further, for identifying the underlying structure responsible for the patterns of behavior. If you, perhaps recalling your philosophy studies, detect a degree of rejection of reductionism in that definition, you’re right on track. More on that below. See the Systems Thinking World‘s definition page for a list of other definitions.

Barry Richmond, like Jay W Forrester, his mentor and prolific writer on Systems Thinking, was also heavily involved in System Dynamics. While many people equate the two concepts, others distinguish System Dynamics from Systems Thinking by the former’s use of feedback-loop computer models. Forrester, a consummate engineer and true innovator, developed the Systems Dynamics approach at MIT in the 1960s.

Caffeine Systems Thinking
System dynamics model showing processing of caffeine by the body and effects on drowsiness

For several decades Forrester applied Systems Thinking to business management, society and politics, maintaining throughout, that system dynamics is the necessary foundation underlying effective thinking about systems. In a 2010 paper, Forrester, then in the Sloan School of Management, wrote:

Without a foundation of systems principles, simulation, and an experimental approach, systems thinking runs the risk of being superficial, ineffective, and prone to arriving at  counterproductive conclusions. Those seeking an easy way to design better social systems will be as disappointed as if they were to seek an effortless route to designing bridges or doing heart transplants.

These bold and beautiful words are lost on the those who only know systems thinking from its current usage as little more than a strategic-initiative group-hug word. The quote is from Forrester’s appeal that Systems Thinking, at least as popularly defined, is insufficient without system dynamics modeling. Forrester speaks to usage of Systems Thinking that is nearly as deflated as current usage of “six-sigma,” by which our ancestors meant standard deviations of manufacturing tolerance (statistical process control). Nevertheless, as sociolinguists point out, a word means what a large body of its users think it means.

In the spirit of multidisciplinarity, it’s tempting to view this war from the perspective of study of religious cults. Too tempting – so I’ll succumb.

As with the internecine battles of religious cults, this is a war of small differences; often the factions in greatest dispute are the ones with the most similar views. Their differences are  real, but  imperceptible to most outsiders. They argue over definitions and interpretations, engaging in doctrinal disputes with constant deference to the cults’ founders. I also detect a fair amount of anxiety of influence in Systems Thinking advocates with roots in hard sciences.

Many systems engineers, including some very good ones, after opening the door to systems thinking, strain to differentiate themselves from their less evolved brethren.  John Boardman and Brain Sauser, thought leaders for whom I have the utmost respect, oddly display the anxiety of influence in statements like this from their Worlds of Systems site:

Our engineering friends believe the term ‘system’ is theirs of right and they alone understand systems. After all, who builds them? Who gets the job done? You would think, to hear some engineers talk, that they invented the term itself. In fact what propelled it into the high currency values it occupies today were the ideas of Ludwig von Bertalanffy.

Here we have two brilliant engineers (see in particular their work on Systems of Systems) who – though perhaps in jest – downplay the development of systems thinking a la Forrester, deferring to Bertalanffy, the biologist who first used the term Systems Theory. Semantic mapping tools available on the web clearly show that Bertalanffy, ground-breaking as he was, had next to nothing to do with the propulsion of the term “system” to its current status. The route was, as you’d expect, from Greek philosophy to Renaissance astronomy, to biology and engineering, and then on to computers.

Without delving into heady problems of Bertalanffy’s worldview, such as the paradox of emergence and the paradox of system environment, I’ll suggest that Bertalanffy was a great thinker, but should not occupy too high a pedestal. His view that the reductionist nature of biology of the mid 1900s stemmed solely from the influence of Descartes and Newton (who thought nature could be modeled as mechanism) ignored the obvious necessity of reduction in order to link stimulus with response. Testing ten foods separately, to see which causes your allergic reaction, does not conflict with holism. Bertalanffy, despite his great contributions, beat a reductionist straw man to death. Finally, can anyone not find Bertalanffy’s language of his later works indistinguishable from that of liberal theologians? Paul Tillich meets business management?

Boardman and Sauser similarly quote Philip Spor’s remark, “the engineer must often go beyond the limits of science, or question judgment based on alleged existing science,” as if such going-beyond isn’t inherent in engineering. Really guys, does anyone really think that the science of turbomachinery predated the engineering of turbomachines? Recall that special relativity was solid before the fourth-order partial differential equations governing a turbocharger were nailed down, at which time Alfred Büchi ‘s invention was common on trucks and trains. The opponent here is also mostly made of straw – a purely reductionist caricature of a systems engineer.

As a scholar of history of science and a fan of history of religion, here’s what I think is going on. Systems thinking is often at the intersection of systems science and social and management science; and the most orthodox of each of those root beliefs accuses the others of being too hard (as seen by social science) or too soft (as seen by engineers). The most liberal (or reformist, in the religious model) accuse their own party of being entrenched in orthodoxy.

Cult members mine the writings of these clergymen for ammunition against rival cults, thus we see quotes from Forrester, Bertalanffy, Ackoff and the like on websites, grossly misunderstood, and out of context. And we see ludicrous and undisciplined extensions of their material, as with Gary Zukav, Fritjof Capra, and Roger Penrose. The cult’s most vocal advocates insist on deifying the movement’s founders, and speak in terms of discovery and illumination rather than evidence and development.

Reasoning by analogy, yes; but I think you’ll admit this analogy holds rather well.

Another face of the Systems Thinking wars deals not with definitions and philosophy but with efficacy. In a 2009 Fast Company piece Fred Collopy, an experienced practitioner and teacher of Systems Thinking opined more or less that Systems Thinking is a failure – not because it has internal flaws but because it is hard. Systems Thinking, says Collopy, requires mastery of a large number of techniques, none of which is particularly useful by itself. This requirement is at odds with the way people learn, except in strict academic circles. Collopy offers that Design Thinking is an alternative, but only if we can keep it from being bogged down in detailed process definition and becoming an overly restrictive framework. He notes that if Systems Thinking had worked like its early advocates hoped it would, there would be no management-by-design movement or calls for integrated management practice.

Interesting stuff indeed. It will be fun to see how this plays out. If history is a guide, and as Collopy seems to suggest, it may fizzle out before it plays out. Business schools and corporate leadership have a record of moving on to new, more fashionable approaches, independent of the value of current ones. More on that tomorrow.

———————–

Philosophy of science is as useful to scientists as ornithology is to birds. – Richard Feynman

Thanks to Ventana Systems, Inc. for use of their VENSIM® tools.
Thanks to @DanMezick for recent tweet exchange on Systems Thinking.

, , , , , , , , ,

6 Comments