Posts Tagged science

Nobel Laureates Stoop to the Level of Greenpeace

Over 100 Nobel laureates signed a letter urging Greenpeace to stop opposing genetically modified organisms (GMOs). The letter specifically address golden rice, a genetically engineered crop designed to reduce Vitamin-A deficiencies, which cause blindness in children of the developing world.

My first thought is to endorse any effort against the self-obsessed, romantic dogmatism of Greenpeace. But that may be a bit hasty.

The effort behind the letter was organized by Sir Richard Roberts, Chief Scientific Officer of New England Biolabs and Phillip Sharp, winner of the 1993 Nobel Prize in Physiology or Medicine for the discovery that genes in eukaryotes are not contiguous strings and contain introns. UC Berkeley’s Randy Schekman, professor of cell and developmental biology and 2013 Nobel laureate also signed the letter.

I expect Roberts, Sharp, Schekman and other signers are highly qualified to offer an opinion on the safety of golden rice. And I suspect they’re right about Greenpeace. But I think the letter is a terrible move for science.

Of the 110 Nobel laureate signers as of today, 26 are physicists and 34 are chemists. Laureates in Peace, Literature and Economics are also on the list. It’s possible that a physicists or an economist might be highly skilled in judging the safety of golden rice; but I doubt that most Nobel winners who signed that letter are more qualified than the average molecular biologist without a Nobel Prize.

Scientists, more than most folk, should be aware that consensus should not be recruited to support a theory. Instead, consensus should occur only when the last skeptic is dragged, kicking and screaming, over the evidence, then succumbing to the same explanatory theory held by peers. That clearly didn’t happen with Roberts’ campaign and argument from authority.

Also, if these Nobel-winning scientist had received slightly less specialized educations, they might see a terrible irony here. They naively attempt to side step Hume’s Guillotine. That is, by thinking that scientific knowledge allows deriving an “ought” statement from an “is” statement (or collection of scientific facts), they indulge in ethical naturalism and are exposed to the naturalistic fallacy. And in a very literal sense, ethical naturalism is exactly the delusion under which Greenpeace operates.



Each day I wonder how many things I am dead wrong about. – Jim Harrison




The Trouble with Strings

Theoretical physicist Brian Greene is brilliant, charming, and silver-tongued. I’m guessing he’s the only Foundational Questions Institute grant awardee who also appears on the Pinterest Gorgeous Freaking Men page. Greene is the reigning spokesman for string theory, a theoretical framework proposing that one dimensional (also higher dimensions in later variants, e.g., “branes”) objects manifest different vibrational modes to make up all particles and forces of physics’ standard model. Though its proponents now discourage such usage, many call string theory the grand unification, the theory of everything. Since this includes gravity, string theorists also hold that string theory entails the elusive theory of quantum gravity. String theory has gotten a lot of press over the past few decades in theoretical physics and, through academic celebrities like Greene, in popular media.


Several critics, some of whom once spent time in string theory research, regard it as not a theory at all. They see it as a mere formalism – a potential theory or family – very, very large family – of potential theories, all of which lack confirmable or falsifiable predictions. Lee Smolin, also brilliant, lacks some of Greene’s other attractions. Smolin is best known for his work in loop quantum gravity – roughly speaking, string theory’s main competitor. Smolin also had the admirable nerve to publicly state that, despite the Sokol hoax affair, sociologists have the right and duty to examine the practice of science. His sensibilities on that issue bring to bear on the practice of string theory.

Columbia University’s Peter Woit, like Smolin, is a highly vocal critic of string theory. Like Greene and Smolin, Woit is wicked sharp, but Woit’s tongue is more venom than silver. His barefisted blog, Not Even Wrong, takes its name from a statement Rudolf Peierls claimed Wolfgang Pauli had made about some grossly flawed theory that made no testable predictions.

The technical details of whether string theory is in fact a theory or whether string theorists have made testable predictions or can, in theory, ever make such predictions is great material that one could spend a few years reading full time. Start with the above mentioned authors and follow their references. Though my qualifications to comment are thin, it seems to me that string theory is at least in principle falsifiable, at least if you accept that failure to detect supersymmetry (required for strings) at the LHC or future accelerators over many attempts to do so.

But for this post I’m more interested in a related topic that Woit often covers – not the content of string theory but its practice and its relationship to society.

Regardless of whether it is a proper theory, through successful evangelism by the likes of Greene, string theory has gotten a grossly disproportionate amount of research funding. Is it the spoiled, attention-grabbing child of physics research? A spoiled child for several decades, says Woit – one that deliberately narrowed the research agenda to exclude rivals. What possibly better theory has never seen the light of day because its creator can’t get a university research position? Does string theory coerce and persuade by irrational methods and sleight of hand, as Feyerabend argued was Galileo’s style? Galileo happened to be right of course – at least on some major points.

Since Galileo’s time, the practice of science and its relationship to government, industry, and academic institutions has changed greatly. Gentleman scientists like Priestly, Boyle, Dalton and Darwin are replaced by foundation-funded university research and narrowly focused corporate science. After Kuhn – or misusing Kuhn – sociologists of science in the 1980s and 90s tried to knock science from its privileged position on the grounds that all science is tainted with cultural values and prejudices. These attacks included claims of white male bias and echoes of Eisenhower’s warnings about the “military industrial complex.”   String theory, since it holds no foreseeable military or industrial promise, would seem to have immunity from such charges of bias. I doubt Democrats like string more than Republicans.

Yet, as seen by Smolin and Woit, in string theory, Kuhn’s “relevant community” became the mob (see Lakatos on Kuhn/mob) – or perhaps a religion not separated from the state. Smolin and Woit point to several cult aspects of the string theory community. They find it to be cohesive, monolithic and high-walled – hard both to enter and to leave. It is hierarchical; a few leaders control the direction of the field while its initiates aim to protect the leaders from dissenting views.  There is an uncommon uniformity of views on open questions; and evidence is interpreted optimistically. On this view, string theorists yield to Bacon’s idols of the tribe, the cave, and the marketplace. Smolin cites the rarity of particle physicists outside of string theory to be invited to its conferences.

In The Trouble with Physics, Smolin details a particular example of community cohesiveness unbecoming to science. Smolin says even he was, for much of two decades, sucked into the belief that string theory had been proved finite. Only when he sought citations for a historical comparison of approaches in particle physics he was writing did he find that what he and everyone else assumed to have been proved long ago had no basis. He questioned peers, finding that they too had ignored vigorous skepticism and merely gone with the flow. As Smolin tells it, everyone “knew” that Stanley Mandelstam (UC Berkeley)  had proved string theory finite in its early days. Yet Mandelstam himself says he did not. I’m aware that there are other takes on the issue of finitude that may soften Smolin’s blow; but, in my view, his point on group cohesiveness and their indignation at being challenged still stand.

A telling example of the tendency for string theory to exclude rivals comes from a 2004 exchange on the sci.physics.strings Google group between Luboš Motl and Wolfgang Lerche of CERN, who does a lot of work on strings and branes. Motl pointed to Leonard Susskind’s then recent embrace of “landscapes,” a concept Susskind had dismissed before it became useful to string theory. To this Lerche replied:

“what I find irritating is that these ideas are out since the mid-80s… this work had been ignored (because it didn’t fit into the philosophy at the time) by the same people who now re-“invent” the landscape, appear in journals in this context and even seem to write books about it.  There had always been proponents of this idea, which is not new by any means.. . . the whole discussion could (and in fact should) have been taken place in 1986/87. The main thing what has changed since then is the mind of certain people, and what you now see is the Stanford propaganda machine working at its fullest.”

Can a science department in a respected institution like Stanford in fairness be called a propaganda machine? See my take on Mark Jacobson’s science for my vote. We now have evidence that science can withstand religion. The question for this century might be whether science, in the purse sense, can withstand science in the corporate, institutional, and academic sense.


String theory cartoon courtesy of XKCD.


I just discovered on Woit’s Not Even Wrong a mention of John Horgan’s coverage of Bayesian belief (previous post) applied to string theory. Horgan notes:

“In many cases, estimating the prior is just guesswork, allowing subjective factors to creep into your calculations. You might be guessing the probability of something that–unlike cancer—does not even exist, such as strings, multiverses, inflation or God. You might then cite dubious evidence to support your dubious belief. In this way, Bayes’ theorem can promote pseudoscience and superstition as well as reason.

Embedded in Bayes’ theorem is a moral message: If you aren’t scrupulous in seeking alternative explanations for your evidence, the evidence will just confirm what you already believe.”

, ,


Great Innovative Minds: A Discord on Method

Great minds do not think alike. Cognitive diversity has served us well. That’s not news to those who study innovation; but I think you’ll find this to be a different take on the topic, one that gets at its roots.

The two main figures credited with setting the scientific revolution in motion did not agree at all on what the scientific method actually was. It’s not that they differed on the finer points; they disagreed on the most basic aspect of what it meant to do science – though they didn’t yet use that term. At the time of Francis Bacon and Rene Descartes, there were no scientists. There were natural philosophers. This distinction is important for showing just how radical and progressive Descartes and Bacon were.

'Descartes" In Discourse on Method, Descartes argued that philosophers, over thousands of years of study, had achieved absolutely nothing. They pursued knowledge, but they had searched in vain. Descartes shared some views with Aristotle, but denied Aristotelian natural philosophy, which had been woven into Christian beliefs about nature. For Aristotle, rocks fell to earth because the natural order is for rocks to be on the earth, not above it – the Christian version of which was that it was God’s plan. In medieval Europe truths about nature were revealed by divinity or authority, not discovered. Descartes and Bacon were both devout Christians, but believed that Aristotelian philosophy of nature had to go. Observing that there is no real body of knowledge that can be claimed by philosophy, Descartes chose to base his approach to the study of nature on mathematics and reason. A mere 400 years after Descartes, we have trouble grasping just how radical this notion was. Descartes believed that the use of reason could give us knowledge of nature, and thus give us control over nature. His approach was innovative, in the broad sense of that term, which I’ll discuss below. Observation and experience, however, in Descartes’ view, could be deceptive. They had to be subdued by pure reason. His approach can be called rationalism. He sensed that we could use rationalism to develop theories – predictive models – with immense power, which would liberate mankind. He was right. 

Francis Bacon, Descartes slightly older counterpart in the scientific revolution, was a British philosopher and statesman who became attorney general in 1613 under James I. He is now credited with being the father of empiricism, the hands-on, experimental basis for modern science, engineering, and technology. Bacon believed that acquiring knowledge of nature had to be rooted in observation and sensory experience alone. Do experiments and then decide what it means. Infer conclusions from the facts. Bacon argued that we must quiet the mind and apply a humble, mechanistic approach to studying nature and developing theories. Reason biases observation, he said. In this sense, the theory-building models of Bacon and Descartes were almost completely opposite. I’ll return to Bacon after a clarification of terms needed to make a point about him.

Innovation has many meanings. Cicero said he regarded it with great suspicion. He saw innovation as the haphazard application of untested methods to important matters. For Cicero, innovators were prone to understating the risks and overstating the potential gains to the public, while the innovators themselves had a more favorable risk/reward quotient. If innovation meant dictatorship for life for Julius Caesar after 500 years of self-governance by the Roman people, Cicero’s position might be understandable.

Today, innovation usually applies specifically to big changes in commercial products and services, involving better consumer value, whether by new features, reduced prices, reduced operator skill level, or breaking into a new market. Peter Drucker, Clayton Christensen and the tech press use innovation in roughly this sense. It is closely tied to markets, and is differentiated from invention (which may not have market impact), improvement (may be merely marginal), and discovery.

BaconThat business-oriented definition of innovation is clear and useful, but it leaves me with no word for what earlier generations meant by innovation. In a broader sense, it seems fair that innovation also applies to what vanishing point perspective brought to art during the renaissance. John Locke, a follower of both Bacon and Descartes, and later Thomas Jefferson and crew, conceived of the radical idea that a nation could govern itself by the application of reason. Discovery, invention and improvement don’t seem to capture the work of Locke and Jefferson either. Innovation seems the best fit. So for discussion purposes, I’ll call this innovation in the broader sense as opposed to the narrower sense, where it’s tied directly to markets.

In the broader sense, Descartes was the innovator of his century. But in the narrow sense (the business and markets sense), Francis Bacon can rightly be called the father of innovation – and it’s first vocal advocate. Bacon envisioned a future where natural philosophy (later called science) could fuel industry, prosperity and human progress. Again, it’s hard to grasp how radical this was; but in those days the dominant view was that mankind had reached its prime in ancient times, and was on a downhill trajectory. Bacon’s vision was a real departure from the reigning view that philosophy, including natural philosophy, was stuff of the mind and the library, not a call to action or a route to improving life. Historian William Hepworth Dixon wrote in 1862 that everyone who rides in a train, sends a telegram or undergoes a painless surgery owes something to Bacon. In 1620, Bacon made, in The Great Instauration, an unprecedented claim in the post-classical world:

“The explanation of which things, and of the true relation between the nature of things and the nature of the mind … may spring helps to man, and a line and race of inventions that may in some degree subdue and overcome the necessities and miseries of humanity.”

In Bacon’s view, such explanations would stem from a mechanistic approach to investigation; and it must steer clear of four dogmas, which he called idols. Idols of the tribe are the set of ambient cultural prejudices. He cites our tendency to respond more strongly to positive evidence than to negative evidence, even if they are equally present; we leap to conclusions. Idols of the cave are one’s individual preconceptions that must be overcome. Idols of the theater refer to dogmatic academic beliefs and outmoded philosophies; and idols of the marketplace are those prejudices stemming from social interactions, specifically semantic equivocation and terminological disputes.

Descartes realized that if you were to strictly follow Bacon’s method of fact collecting, you’d never get anything done. Without reasoning out some initial theoretical model, you could collect unrelated facts forever with little chance of developing a usable theory. Descartes also saw Bacon’s flaw in logic to be fatal. Bacon’s method (pure empiricism) commits the logical sin of affirming the consequent. That is, the hypothesis, if A then B, is not made true by any number of observations of B.  This is because C, D or E (and infinitely more letters) might also cause B, in the absence of A. This logical fallacy had been well documented by the ancient Greeks, whom Bacon and Descartes had both studied. Descartes pressed on with rationalism, developing tools like analytic geometry and symbolic logic along the way.

Interestingly, both Bacon and Descartes were, from our perspective, rather miserable scientists. Bacon denied Copernicanism, refused to accept Kepler’s conclusion that planet orbits were elliptical, and argued against William Harvey’s conclusion that the heart pumped blood to the brain through a circulatory system. Likewise, by avoiding empiricism, Descartes reached some very wrong conclusions about space, matter, souls and biology, even arguing that non-human animals must be considered machines, not organisms. But their failings were all corrected by time and the approaches to investigation they inaugurated. The tension between their approaches didn’t go unnoticed by their successors. Isaac Newton took a lot from Bacon and a little from Descartes; his rival Gottfried Leibniz took a lot from Descartes and a little from Bacon. Both were wildly successful. Science made the best of it, striving for deductive logic where possible, but accepting the problems of Baconian empiricism. Despite reliance on affirming the consequent, inductive science seems to work rather well, especially if theories remain open to revision.

Bacon’s idols seem to be as relevant to the boardroom as they were to the court of James I. Seekers of innovation, whether in the classroom or in the enterprise, might do well to consider the approaches and virtues of Bacon and Descartes, of contrasting and fusing rationalism and observation. Bacon and Descartes envisioned a brighter future through creative problem-solving. They broke the bonds of dogma and showed that a new route forward was possible. Let’s keep moving, with a diversity of perspectives, interpretations, and predictive models.

, ,


Paul Feyerabend – The Worst Enemy of Science

William Storage           7  Aug 2012
Visiting Scholar, UC Berkeley Center for Science, Technology & Society

PFK3This post is a selective look at Paul Feyerabend, called the worst enemy of science by a 1987 Nature essay. The topic relates directly to the preceding posts on Postmodernism and Thomas Kuhn and is aimed at a discussion of how misunderstood science and misunderstood criticism of science has impacted business and technology.

Feyerabend’s direct influence outside of the extended world of philosophy might be seen as fairly limited. But his indirect influence may exceed that of Thomas Kuhn. Unlike Feyerabend, Kuhn was never quoted by a pope.

PopeFeyerabend (1924-1994), a philosopher of science at UC Berkeley for 30 years, was famous for a theory epistemological anarchism – though he doesn’t use that term –  which entails a rejection of scientific methodological rules.  Specifically, Feyerabend claimed the consistency criterion in scientific theory selection is biased toward orthodox views, correct or not.  Further, he faulted science for dogmatic falsificationism. I.e., unlike in mathematics, in science a theory very rarely is consistent with all relevant observations. He later expanded this to a categorical rejection of Popper’s falsifiability/demarcation theories and Popper’s critical rationalism in general. Whether Feyerabend meant to imply any degree of social anarchy in his 1975 Against Method: Outline of an Anarchistic Theory of Knowledge is debatable. But a vast range of audiences who viewed science as a flawed method or as an institution in league with corporate, government and military demons found strong justification in it for their existing anti-science positions.

A decade before Against Method (in which he disputed Popper), Feyerabend was more or less a Popperian and therefore strongly critical of Kuhn’s paradigm shifts. However, he approved of Kuhn’s message that science needed more irrationality. Kuhn intended no such message. While defending himself against the charge of relativism  in the 1965 Proceedings of the International Colloquium in the Philosophy of Science, Kuhn called Feyerabend’s irrationality-based support of Structure, “not only absurd but vaguely obscene.”

In his 1987 Farewell to Reason Feyerabend commented on his two previous books:

“In Against Method I argued that the customary accounts of scientific knowledge and scientific method are faulty and that scientists do not proceed ‘rationally’ in the sense of rationalist philosophers. In Science in a Free Society I argued that the sciences are particular ways of gaining information and of interfering with the world, that there are other such ways and that these ‘other’ ways are satisfactory in the sense that they meet the material and spiritual needs of those who use them. I added that, like all institutions in a free society, the sciences should be subjected to a democratic control.”

As with Kuhn, Feyerabend chose provocative language that sounded much more radical outside of philosophy of science than within it. Even for that narrow audience, the language of Against Method was radical enough, and became more so later.

The fine print – or rather, less cited print – of Against Method included explicit limits on scope:

“My intention is not to replace one set of general rules by another such set: my intention is, rather, to convince the reader that all methodologies, even the most obvious ones, have their limits. The best way to show this is to demonstrate the limits and even the irrationality of some rules which she, or he, is likely to regard as basic.”

As with Kuhn, the most common criticisms of Feyerabend’s thesis of Against Method (as opposed to the provocative prose he embedded it in) fail to grasp its limited scope, misunderstand it, and refute a caricature of it. Unlike Kuhn, Feyerabend seems to have thoroughly enjoyed the corresponding fame and infamy, and to have run with it. Feyerabend’s theories expanded in scope, becoming more sociological, and more political. He frequently reversed positions, reversal ultimately becoming core to his philosophy.

PKF2At times, Feyerabend is hard to argue with. He’s got good points regarding falsificationism and modern scientific theories enduring some inconsistent observations. Elsewhere his case seems weak. He opportunistically redefines science between method and institution to suit his needs. He builds a straw man from claims that science believes it creates facts as opposed to models. Whether he was right or wrong or even cared about such distinctions isn’t terribly important to his impact on popular conceptions of science and popular understanding of criticism of science, which was enormous.

I’ll leave you with a handful of other Feyerabend quotes from the ’70s and ’80s, some conciliatory, some shocking when removed from their context, some fiendishly provocative regardless of original context. Many of the sentiments – or the exact words – will sound familiar today, now core to religious, pseudoscientific, new age, motivational, and occasionally business management strategies. For that Paul Feyerabend deserves praise or blame.

“The similarities between science and myth are indeed astonishing.”

“The church at the time of Galileo was much more faithful to reason than Galileo himself, and also took into consideration the ethical and social consequences of Galileo’s doctrine. Its verdict against Galileo was rational and just, and revisionism can be legitimized solely for motives of political opportunism.”

“All methodologies have their limitations and the only ‘rule’ that survives is ‘anything goes’.”

“Revolutions have transformed not only the practices their initiators wanted to change buy the very principles by means of which… they carried out the change.”

“Kuhn used a different approach to a similar (not an identical) situation. His approach was historical, mine was abstract.”

“Kuhn’s masterpiece played a decisive role. It led to new ideas, Unfortunately it also led to lots of trash.”

“First-world science is one science among many.”

“Progress has always been achieved by probing well-entrenched and well-founded forms of life with unpopular and unfounded values. This is how man gradually freed himself from fear and from the tyranny of unexamined systems.”

“The sciences of today are business enterprises run on business principles. Research in large institutes is not guided by Truth and Reason but by the most rewarding fashion, and the great minds of today increasingly turn to where the money is — which means military matters.”

“The separation of state and church must be complemented by the separation of state and science, that most recent, most aggressive, and most dogmatic religious institution.”

“Without a constant misuse of language, there cannot be any discovery, any progress.”


Photos of Paul Feyerabend courtesy of Grazia Borrini-Feyerabend. Used by permission.

, , , ,


The Incommensurable Thomas Kuhn

William Storage           4 Aug 2012
Visiting Scholar, UC Berkeley Center for Science, Technology & Society

Thomas Kuhn’s 1962 book, The Structure of Scientific Revolutions, appears in Wikipedia’s list of the 100 most influential books in history. In Structure, Kuhn introduced the now ubiquitous term and concept of paradigm shift. As Kuhn saw it, the scope of a paradigm was universal. A paradigm is not merely a theory, but the framework and worldview in which a theory dwells. Kuhn explained that, “successive transition from one paradigm to another via revolution is the usual developmental pattern of mature science.” His view was that paradigms guide research through periods of “normal science,” during which, any experimental results not consistent with the paradigm are deemed erratic and are discarded. This persists until overwhelming evidence against the paradigm results in its collapse, and a paradigm shift occurs.

Kuhn stressed the idea of incommensurability between associated paradigms, meaning that it is impossible to understand the new paradigm from within the conceptual framework of its predecessor. Examples include the Copernican Revolution, plate tectonics,  and quantum mechanics.

Countless discussions and critiques of Kuhn and his work have been published. I’ll focus mainly on aspects of his work – and popular conceptions of it – related to its appropriation in technology and business process management; but a bit of background on popular misunderstandings of his work from a philosophy perspective will come in handy later.

Kuhn’s claim of incommensurability led many  to conclude that the selection of a governing theory is fundamentally irrational, a product of consensus or politics rather than of objective criteria. This fueled flames already raging in criticism of science in postmodernist, subjectivist, and post-structuralist circles. Kuhn was an overnight sensation and placed on a pedestal by all sorts of relativism, sociology, and arts and humanities movements, despite his vigorous rejection of them, their methods, their theories, and their paradigms. Decades later (The Road Since Structure), Kuhn added that, “if it was relativism, it was an interesting sort of relativism that needed to be thought out before the tag was applied.”

Communities outside of hard science – 20th century social theory in particular – couldn’t get enough of Kuhn and his paradigm shifts. Much of the Philosophy of Science community scoffed at his book. Within hard science there was considerable debate, particularly by Karl Popper, Stephen Toulmin and Paul Feyerabend. And even in the hard science community, Kuhn found himself in constant defense not against the scientific reading of his model, but against the ideas appropriated by schools of philosophers, cultural theorists, and literary critics calling themselves Kuhnians. Freeman Dyson recall s having confronted Kuhn about these schools of thought:

“A few years ago I happened to meet Kuhn at a scientific meeting and complained to him about the nonsense that had been attached to his name. He reacted angrily. In a voice loud enough to be heard by everyone in the hall, he shouted, ‘One thing you have to understand. I am not a Kuhnian.'” – Freeman Dyson, The Sun, The Genome, and The Internet: Tools of Scientific Revolutions

Postmodern deconstructionists are certainly right about one thing; there are many ways to read Kuhn. Kuhn’s Structure – if interpreted outside the narrow realm in which he intended it to operate – becomes strangely self-referential and self-exemplifying. Different communities consumed it as constrained by their existing paradigms. In The Road Since Structure Kuhn reflected that, regarding Structure‘s uptake, he had disappointments but not regrets. He suggested that if he had it do over, he would have sought to prevent readings such as the view that paradigms are sources of oppression to be destroyed.

Kuhn would have to have been extremely naive to fail to consider the consequences – in the socially precarious 1960s – of describing scientific change in terms of a sociological, political, and Gestalt-psychology models in a book having “revolution” in its title. Or perhaps it was a scientist’s humility (he was educated as a physicist) that allowed him to not anticipate that a book on history of science would ever be read outside the communities of science. Despite the incredulity of such claims – and independent of accuracy of his position on science – my reading of Kuhn’s interviews and commentary on the impact of Structure leads me to conclude that Kuhn is truly an accidental guru – misread, misunderstood, and misused by adoring postmodernist theorists and business strategists alike. Without Thomas Kuhn, paradigm shift would not rank in CNET’s top 10 dot-com buzzwords, futurist Joel Barker and  motivator Stephen Covey would have had very different careers, and postmodern relativists might still be desperately craving some shred of external validation.


“You talk about misuses of Kuhn’s work. I think it is wildly misused outside of natural sciences. The number of scientific revolutions is extremely small… To find one outside the natural sciences is very hard. There are just not enough interesting and signficant ideas around, but it is curious if you read the sociological or linguistic literate, that people are finding revolutions everywhere.” – Noam Chomsky, The Generative Enterprise Revisited

“Let us now turn our atention towards some historical analyses that have apparently provided grist for the mill of contemporary relativism. The most famous of these is undoubtedly Thomas Kuhn’s The Structure of Scientific Revolutions.” – Alan Sokol, Beyond the Hoax


The above use of a low-resolution image of Thomas Kuhn is contended to be a fair use because it is solely for the educational purpose of illustrating this article and because the value of any existing copyright is not lessened by its use here. The subject is deceased and no free equivalent can therefore be obtained. The image is of greatly lower quality than the original, reducing the risk of damage to the value of the original version.

, , ,


Science, Holism and Easter

Detail from Bianchini's MeridianaThomas E. Woods, Jr., in How the Catholic Church Built Western Civilization, credits the church as being the primary sponsor of western science throughout most of the church’s existence. His point is valid, though many might find his presentation very economical with the truth. With a view that everything in the universe was interconnected, the church was content to ascribe the plague to sin. The church’s interest in science had something to do with Easter. I’ll get to that after a small diversion to relate this topic to one from a recent blog post.

Catholic theologians, right up until very recent times, have held a totally holistic view, seeing properties and attributes as belonging to high level objects and their context, and opposing reductionism and analysis by decomposition. In God’s universe (as they saw it), behavior of the parts was determined by the whole, not the other way around. Catholic holy men might well be seen as champions of “Systems Thinking” – at least in the popular modern use of that term. Like many systems thinking advocates in business and politics today, the church of the middle ages wasn’t merely pragmatic-anti-reductionist, it was philosophically anti-reductionist. I.e., their view was not that it is too difficult to analyze the inner workings of a thing to understand its properties, but that it is fundamentally impossible to do so.

Baths of Diocletian
Santa Maria degli Angeli, a Catholic solar observatory

Unlike modern anti-reductionists, whose movement has been from reductionism toward something variously called collectivism, pluralism or holism, the Vatican has been forced in the opposite direction. The Catholics were dragged kicking and screaming into the realm of reductionist science because one of their core values – throwing really big parties – demanded it.

The celebration date of Easter is based on pagan and Jewish antecedents. Many agricultural gods were celebrated on the vernal equinox. The celebration is also linked to Shavuot and Passover. This brings the lunar calendar into the mix.   That means Easter is a movable feast; it doesn’t occur on a fixed day of the year. It can occur anywhere from March 22 to April 25. Roughly speaking, Easter is the first Sunday following the first full moon after the spring equinox. To mess things up further, the ecclesiastical definitions of equinox and full moon are not the astronomical ones. The church wades only so far into the sea of reductionism. Consequently, different sects have used different definitions over the years. Never fearful of conflict, factions invented nasty names for rival factions; and, as Socrates Scholasticus tells it, Bishop John Chrysostom booted some of his Easter-calculation opponents out of the early Catholic church.

The Sun of GodScience in the midst of faith, Santa Maria degli Angeli

By the 6th century, the papal authorities had legislated a calculation for Easter, enforcing it as if it came down on a tablet. By the twelfth century, they could no longer evade the fact that Easter had drifted way off course.

Right around that time, Muslim scholars had just  translated the works of the ancient Greek mathematicians to Latin (Ptolemy’s Almagest in particular). By the time of the Renaissance, Easter celebrations in Rome were gigantic affairs. Travel arrangements and event catering meant that the popes needed to plan for Easter celebrations many years in advance. They wanted to send out invitations specifying a single date, not a five week range.

Bianchini's MeridianaSketch from Bianchini’s 1703 “De nummo.”

Science appeared the only way to solve the messy problem of predicting Easter. And the popes happened to have money to throw at the problem. They suddenly became the world’s largest backer of scientific research – well, targeted research, one might say. John Heilbron, Vice-Chancellor Emeritus of UC Berkeley (who brought  me into History of Science at Cal) put it this way in his The Sun in the Church:

The Roman Catholic Church gave more financial support to the study of astronomy for over six centuries, from the recovery of ancient learning during the late Middle Ages into the Enlightenment, than any other, and, probably, all other, institutions. Those who infer the Church’s attitude from its persecution of Galileo may be reassured to know that the basis of its generosity to astronomy was not a love of science but a problem of administration. The problem was establishing and promulgating the date of Easter.

The tough part of the calculation was determining the exact time of the equinox. Experimental measurement would require a large observatory with a small hole in the roof and a flat floor where one could draw a long north-south line to chart out the spot the sun hit on the floor at noon. The spots would trace a circuit around the floor of the observatory. When the spot returned to the same point on the north-south line, you had the crux of the Easter calculation.

Bianchini's Meridian
Bianchini's MeridianaSolar observatory detail in marble floor of church

By luck or divine providence, the popes already had such observatories on hand – the grand churches of Europe. Punching a hole through the roof of God’s house was a small price to pay for predicting the date of Easter years in advance.

Fortunately for their descendants, scientists are prone to going off on tangents, some of which come in handy. They needed a few centuries of experimentation to perfect the Easter calculation. Matters of light diffraction and the distance from the center of the earth to the floor of the church had to be addressed. During this time Galileo and friends stumbled onto a few work byproducts that the church would have been happier without, and certainly would not have invested in.

Gnomon and meridian in Saint-Sulpice, Paris
Gnomon and meridian, Saint-Sulpice, Paris

The guy who finally mastered the Easter problem was Francesco Bianchini, multidisciplinarian par exellence. The church OK’d his plan to build a meridian line diagonally across the floor of the giant church of Santa Maria degli Angeli in Rome. This church owes its size to the fact that it was actually built as a bath during the reign of Diocletian (284 – 305 AD) and was then converted to a church by Pope Pius IV in 1560 with the assistance of Michelangelo. Pius set about to avenge Diocletian’s Christian victims by converting a part of the huge pagan structure built “for the convenience and pleasure of idolaters by an impious tyrant” to “a temple of the virgin.”

Bianchini’s meridian is a major point of tourist interest within Santa Maria degli Angeli. All that science in the middle of a church feels really odd – analysis surrounded by faith, reductionism surrounded by holy holism.

, , , , , ,